98%
921
2 minutes
20
The photosynthetic water-oxidation reaction is catalyzed by the oxygen-evolving complex in photosystem II (PSII) that comprises the MnCaO cluster, with participation of the redox-active tyrosine residue (Y) and a hydrogen-bonded network of amino acids and water molecules. It has been proposed that the strong hydrogen bond between Y and D1-His190 likely renders Y kinetically and thermodynamically competent leading to highly efficient water oxidation. However, a detailed understanding of the proton-coupled electron transfer (PCET) at Y remains elusive owing to the transient nature of its intermediate states involving Y⋅. Herein, we employ a combination of high-resolution two-dimensional N hyperfine sublevel correlation spectroscopy and density functional theory methods to investigate a bioinspired artificial photosynthetic reaction center that mimics the PCET process involving the Y residue of PSII. Our results underscore the importance of proximal water molecules and charge delocalization on the electronic structure of the artificial reaction center.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394912 | PMC |
http://dx.doi.org/10.1016/j.isci.2020.101366 | DOI Listing |
ACS Appl Bio Mater
September 2025
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.
View Article and Find Full Text PDFLangmuir
September 2025
Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria.
Azo dyes, prevalent in various industries, including textile dyeing, food, and cosmetics, pose significant environmental and health risks due to their chemical stability and toxicity. This study introduces the synthesis and application of a copper hydrogen-π-bonded benzoate framework (Cu-HBF) and its derived marigold flower-like copper oxide (MFL-CuO) in a synergetic adsorption-photocatalytic process for efficiently removing cationic azo dyes from water, specifically crystal violet (CV), methylene blue (MB), and rhodamine B (RhB). The Cu-HBF, previously available only in single crystal form, is prepared here as a crystalline powder for the first time, using a low-cost and facile procedure, allowing its application as an adsorbent and also serving as a precursor for synthesizing well-structured copper oxide (MFL-CuO).
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
Division of Ophthalmic Plastic and Reconstructive Surgery, Sadik Eratik Eye Institute, Haydarpasa Numune Education and Research Hospital, University of Health Sciences.
Orbital floor fractures can lead to enophthalmos and diplopia, often requiring surgical intervention to restore orbital volume. Autologous iliac bone grafts are commonly used due to their biocompatibility and mechanical stability, but achieving adequate fixation remains a challenge. Traditional fixation methods, such as plates and screws, may introduce risks of foreign body reactions, graft displacement, and surgical morbidity.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Materials DX Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
The quantum mechanics/molecular mechanics (QM/MM) method is a powerful approach for investigating solid surfaces in contact with various types of media, since it allows for flexible modeling of complex interfaces while maintaining an all-atom representation. The mean-field QM/MM method is an average reaction field model within the QM/MM framework. The method addresses the challenges associated with the statistical sampling of interfacial atomic configurations of a medium and enables efficient calculation of free energies.
View Article and Find Full Text PDFJ Org Chem
September 2025
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, University Engineering Research Center for Chemistry of Characteristic Medicinal Resources (Guangxi),
Herein, we have developed a Brønsted acid catalyzed 1,5-migration of functional groups from indole-tethered ynamides to prepare a variety of 2-acyltryptamines in good to excellent yields with high site-selectivity at the C2-position of indoles. Mechanistic studies revealed that the reaction underwent an intramolecular cyclization, 1,2-migration of the vinyl group, and C-N bond cleavage by hydrolysis in a one pot. The reaction features broad substrate scope, good functional group compatibility, 1,5-migration of functional groups, C-N bond cleavage to form C-C bond, and diverse 2-acyltryptamine scaffolds.
View Article and Find Full Text PDF