Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tumor microenvironment-mechanics greatly affect tumor-cell characteristics such as invasion and proliferation. We and others have previously shown that after chemotherapy, tumor cells shed more extracellular vesicles (EVs), leading to tumor growth and even spread, via angiogenesis and the mobilization of specific bone-marrow-derived cells contributing to metastasis. However, physical, mechanobiological and mechanostructural changes at premetastatic sites that may support tumor cell seeding, have yet to be determined. Here, we collected tumor-derived extracellular vesicles (tEV) from breast carcinoma cells exposed to paclitaxel chemotherapy, and tested their effects on tissue mechanics (eg, elasticity and stiffness) of likely metastatic organs in cancer-free mice, using shear rheometry. Cancer-free mice were injected with saline or with tEVs from untreated cells and lung tissue demonstrated widely variable, viscoelastic mechanics, being more elastic than viscous. Contrastingly, tEVs from chemotherapy-exposed cells induced more uniform, viscoelastic lung mechanics, with lower stiffness and viscosity; interestingly, livers were significantly stiffer than both controls. We observe statistically significant differences in softening of lung samples from all three groups under increasing strain-amplitudes and in their stiffening under increasing strain-frequencies; the groups reach similar values at high strain amplitudes and frequencies, indicating local changes in tissue microstructure. Evaluation of genes associated with the extracellular matrix and fibronectin protein-expression revealed potential compositional changes underlying the altered mechanics. Thus, we propose that tEVs, even without cancer cells, contribute to metastasis by changing microstructures at distant organs. This is done partially by altering the composition and mechanostructure of tissues to support tumor cell invasion and seeding.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.33229DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
12
lung mechanics
8
support tumor
8
tumor cell
8
cancer-free mice
8
cells
6
tumor
5
lung
4
mechanics modifications
4
modifications facilitating
4

Similar Publications

Background: High % of low-voltage area (LVA), a surrogate of scar, is associated with atrial fibrillation (AF) recurrence after pulmonary vein isolation (PVI). Noninvasive biomarkers of LVA are a medical need for PVI decision.

Objective: We aimed to identify the proteome profile of plasma extracellular vesicles (EVs) associated with high % LVA, their cellular origin, and their regulation by hyperglycemia.

View Article and Find Full Text PDF

Introduction: Hematopoietic stem cell transplantation (HSCT) is a promising treatment option for hematological malignancies. Despite its curative potential, it faces clinical challenges, including relapse and graft-versus-host disease (GVHD). Systemic toxicity due to chemotherapy is a significant problem in patients with hematological malignancies.

View Article and Find Full Text PDF

The Proteomic Profiling of Circulating Extracellular Vesicles of Western Diet and Chemical-Induced Murine MASH Model.

Kaohsiung J Med Sci

September 2025

Hepatitis Research Center, College of Medicine; Center for Metabolic Disorders and Obesity; Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly prevalent chronic liver condition that can progress to severe complications such as metabolic dysfunction-associated steatohepatitis (MASH). Despite its growing burden, there are no reliable non-invasive biomarkers for tracking disease progression. In this study, we established a murine MASLD/MASH model using a high-fat diet and chemical (CCl) induction.

View Article and Find Full Text PDF

Exosomes derived from various cells have been demonstrated to contribute to cardiac repair by regulating macrophage polarization in myocardial infarction. However, how exosomes secreted from cardiomyocytes under hypoxia-ischemia (Hypo-Exo) regulate macrophage polarization in the local tissues is elusive. This study aimed to determine the underlying mechanisms by which Hypo-Exo polarized M2 macrophages.

View Article and Find Full Text PDF

Electrical pulse stimulation (EPS) represents a useful tool to study exercise-related adaptations of muscle cells in vitro. Here, we examine the metabolic and secretory response of primary human muscle cells from metabolically healthy individuals to the EPS protocol reflecting the episodic nature of real-life exercise training. This intermittent EPS protocol alternates high-frequency stimulation periods with low-frequency resting periods.

View Article and Find Full Text PDF