Catalytic regio- and stereoselective intermolecular [5+2] cycloaddition via conjugative activation of oxidopyrylium.

Chem Commun (Camb)

Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.

Published: August 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A catalytic stereodivergent intermolecular [5+2] cycloaddition of maltol-type oxidopyrylium through conjugative activation was reported, which featured high stereoselectivity, good compatibility and mild conditions, providing a convenient access route to various seven-membered heterocycles in moderate to excellent yields. In addition, a discrete mechanism was proposed to illustrate the stereoselectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc04309eDOI Listing

Publication Analysis

Top Keywords

intermolecular [5+2]
8
[5+2] cycloaddition
8
conjugative activation
8
catalytic regio-
4
regio- stereoselective
4
stereoselective intermolecular
4
cycloaddition conjugative
4
activation oxidopyrylium
4
oxidopyrylium catalytic
4
catalytic stereodivergent
4

Similar Publications

Isoxazoles to Multisubstituted Thiazoles via an Ammonium Iodide-Catalyzed Formal [3+2] Cycloaddition Reaction.

Org Lett

September 2025

National Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, P. R. China.

A method for the conversion of isoxazoles into thiazoles by skeleton rearrangement has been achieved by an ammonium iodide-catalyzed cycloaddition protocol under mild conditions with a broad substrate scope and good functional group tolerance. Most appealingly, the reaction can proceed smoothly without the addition of any transition metal catalyst. Detailed mechanistic studies, including control experiments and key reaction intermediate characterization, reveal an intermolecular [3+2] cycloaddition reaction pathway.

View Article and Find Full Text PDF

The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).

View Article and Find Full Text PDF

In this paper, we investigated the thermal, dynamical, and structural properties, as well as association patterns, in 3-phenyl-1-propanol (3P1Pol) and 3-phenyl-1-propanal (3P1Pal), with special attention paid to the latter compound. Both systems turned out to be good glass formers, differing by 17 K in the glass transition temperature, which indicated a strong change in the self-assembly pattern. This supposition was further confirmed by the analysis of dielectric spectra, where, apart from the α-relaxation, also a unique Debye (D)-mode, being a fingerprint of the self-association, characterized by different dynamical properties (dielectric strength, timescale separation from the α-process), was detected in both samples.

View Article and Find Full Text PDF

The bacterial OMP amyloids modulate α-synuclein and amyloid-β aggregation.

Int J Biol Macromol

September 2025

Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia; Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, 4 Tikhoretsky ave., 194064, St. Petersburg, Russia. Electronic address:

Growing evidence links gut microbiota to neurodegenerative diseases, yet direct molecular interactions between bacterial and host amyloid proteins remain incompletely understood. Bacterial amyloids represent an understudied yet potentially critical component of gut-brain communication in neurodegeneration. Here, we provide the first investigation of whether amyloids formed by outer membrane proteins (OMPs) of enterobacteria can modulate neurodegeneration-associated protein aggregation.

View Article and Find Full Text PDF

Ruthenium-Catalyzed Intermolecular [2 + 2] Cycloaddition of Unactivated Allenes and Alkynes with Unusual Regioselectivity.

J Am Chem Soc

September 2025

Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.

Described here is an efficient protocol for intermolecular [2 + 2] cycloaddition of unactivated and unsymmetrical allenes and alkynes with unusual regioselectivity, counterintuitively favoring the most hindered isomer. CpRu(MeCN)PF served as a uniquely effective catalyst, providing diverse 3-alkylidenecyclobutenes with a broad scope and good functional group compatibility. Both experiments and DFT studies provided important insights into the mechanism, particularly the unusual regioselectivity.

View Article and Find Full Text PDF