Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The CRISPR-Cas9 system is widely used for target-specific genome engineering. CRISPR-Cas12a (Cpf1) is one of the CRISPR effectors that controls target genes by recognizing thymine-rich protospacer adjacent motif (PAM) sequences. Cas12a has a higher sensitivity to mismatches in the guide RNA than does Cas9; therefore, off-target sequence recognition and cleavage are lower. However, it tolerates mismatches in regions distant from the PAM sequence (TTTN or TTN) in the protospacer, and off-target cleavage issues may become more problematic when Cas12a activity is improved for therapeutic purposes. Therefore, we investigated off-target cleavage by Cas12a and modified the Cas12a (cr)RNA to address the off-target cleavage issue. We developed a CRISPR-Cas12a that can induce mutations in target DNA sequences in a highly specific and effective manner by partially substituting the (cr)RNA with DNA to change the energy potential of base pairing to the target DNA. A model to explain how chimeric (cr)RNA guided CRISPR-Cas12a and SpCas9 nickase effectively work in the intracellular genome is suggested. Chimeric guide-based CRISPR- Cas12a genome editing with reduced off-target cleavage, and the resultant, increased safety has potential for therapeutic applications in incurable diseases caused by genetic mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470973PMC
http://dx.doi.org/10.1093/nar/gkaa605DOI Listing

Publication Analysis

Top Keywords

off-target cleavage
16
target dna
8
cas12a
5
off-target
5
cleavage
5
enhancement target
4
target specificity
4
crispr-cas12a
4
specificity crispr-cas12a
4
crispr-cas12a chimeric
4

Similar Publications

Design of cathepsin-sensitive linkers for tumor-selective bioconjugate drug delivery.

J Control Release

September 2025

Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

Cysteine cathepsin, particularly cathepsin B, have emerged as pivotal enzymatic targets in the design of drug delivery systems owing to their overexpression in diverse pathological conditions, most notably cancer. This review provides a comprehensive overview of cathepsin B-cleavable linkers, emphasizing their role in current bioconjugate design and their application across multiple therapeutic platforms. It also provides a comparative overview of linker engineering guided by cathepsin B, ranging from simple dipeptides constructs to modified peptide linkers.

View Article and Find Full Text PDF

DNA base editing is increasingly used for human genetic modification, but methods for monitoring off-target editing are nascent. Here we present a simple model-independent workflow for identifying sites of off-target base-editing in relevant cell types on a genome-wide level. We report that sites of off-target editing by the ABE8e editor could be identified using an ABE8e derivative with restored DSB cleavage activity.

View Article and Find Full Text PDF

The CRISPR/Cas system is a potential tool for genome editing, yet it faces challenges due to off-target activity caused by mismatches at specific positions. However, Off-target activity can be minimized by optimal design of guide RNA (gRNA) but there remains a possibility of unintended cleavage, highlighting the role of the Cas nuclease in off-target recognition and binding the target site. This study focuses on comparing the conformational dynamics and stability of Wildtype, RR, RVR, RRm and RVRm variants of AsCas12a with gRNA-DNA bound complexes.

View Article and Find Full Text PDF

Mesoporous silica nanoparticles with an azobenzene gatekeeper as hypoxia-responsive nanocarriers for targeted doxorubicin delivery.

Drug Deliv Transl Res

August 2025

Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València - Universitat Politècnica de València, Doctor Moliner 50, Burjassot, Valencia, 46100, Spain.

Hypoxia is a key feature of solid tumors, contributing to therapeutic resistance and poor prognosis. Targeting hypoxic environments presents an opportunity to enhance drug delivery selectivity and improve treatment outcomes. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have demonstrated great potential for drug delivery; however, achieving precise control over drug release remains a challenge.

View Article and Find Full Text PDF

In this study, we present the development of the Mutation tagging by CRISPR-based Ultra-precise Targeted Elimination in Sequencing (MUTE-Seq) method. We engineered a highly precise advanced-fidelity FnCas9 variant, named FnCas9-AF2, to effectively discriminate single-base mismatches at all positions of the single guide RNA (sgRNA) target sequences. FnCas9-AF2 exhibited significantly lower off-target effects compared to existing high-fidelity CRISPR-Cas9 variants.

View Article and Find Full Text PDF