98%
921
2 minutes
20
The SARS-CoV-2 virus is more transmissible than previous coronaviruses and causes a more serious illness than influenza. The SARS-CoV-2 receptor binding domain (RBD) of the spike protein binds to the human angiotensin-converting enzyme 2 (ACE2) receptor as a prelude to viral entry into the cell. Using a naive llama single-domain antibody library and PCR-based maturation, we have produced two closely related nanobodies, H11-D4 and H11-H4, that bind RBD (K of 39 and 12 nM, respectively) and block its interaction with ACE2. Single-particle cryo-EM revealed that both nanobodies bind to all three RBDs in the spike trimer. Crystal structures of each nanobody-RBD complex revealed how both nanobodies recognize the same epitope, which partly overlaps with the ACE2 binding surface, explaining the blocking of the RBD-ACE2 interaction. Nanobody-Fc fusions showed neutralizing activity against SARS-CoV-2 (4-6 nM for H11-H4, 18 nM for H11-D4) and additive neutralization with the SARS-CoV-1/2 antibody CR3022.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41594-020-0469-6 | DOI Listing |
Int Immunopharmacol
September 2025
Key Laboratory for Biorheological Science and Technology of Chinese Ministry of Education, National Local Joint Engineering Lab for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; JinFeng Laboratory, Chongqing, 401329, China. Electronic address: wanggx@cq
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that plays a crucial role in the pathophysiology of asthma, initiating multiple allergic cascade responses. Tezepelumab is the only monoclonal antibody currently approved for marketing, which acts by blocking TSLP binding to TSLPR. However, it is reported that a TSLP trap which simultaneously block TSLP binding with TSLPR and IL-7Rα has better efficiency in the repression of TSLP signal pathway.
View Article and Find Full Text PDFTargeted regulation of 70 kilodalton Heat Shock Protein (HSP70) chaperones, particularly the essential cognate heat shock protein (HSC70) and its ortholog, HSP-1, may hold the key to improving cellular proteostasis and ameliorating aging-associated conditions linked to protein misfolding and aggregation. However, tools to selectively modulate HSP70 chaperone activity remain elusive. In this study, we pioneer the development of two novel nanobodies, B12 and H5, which specifically bind to both recombinant and endogenous HSP-1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712.
Nanobodies have been pursued as candidates for antimicrobial design due to their small size and versatile binding capacities, but direct antibacterial activity of a nanobody has yet to be described. Here, we employed a bacterial surface display platform to screen a synthetic library of nanobody variants for antimicrobial potential. We identified a candidate that binds the essential lipid A component of gram-negative lipopolysaccharide.
View Article and Find Full Text PDFFront Immunol
September 2025
Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
Introduction: Although Interleukin (IL)-6-type cytokine signaling is critical for maintaining the body's homeostasis, aberrant signaling has been observed in numerous diseases including autoimmunity and cancer. Currently, all approved biologics that inhibit IL-6-type cytokines specifically target the key pro-inflammatory mediator IL-6 or its receptor (IL6R). Historically, direct inhibition of glycoprotein 130 (gp130)-the shared transmembrane receptor for IL-6-type cytokines-was avoided due to concerns that broad suppression might cause more harm than benefit.
View Article and Find Full Text PDFStructure
August 2025
Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, UK. Electronic address:
We describe the generation and characterization of camelid single-domain antibodies (nanobodies) raised against tumor suppressor protein p16INK4a (p16). p16 is a cell cycle regulator that inhibits cyclin-dependent kinases CDK4 and CDK6 and is inactivated in sporadic and familial cancers. The majority of p16 missense mutations cause loss of function by destabilizing the protein's structure.
View Article and Find Full Text PDF