Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Protein misfolding induced by missense mutations is the source of hundreds of conformational diseases. The cell quality control may eliminate nascent misfolded proteins, such as enzymes, and a pathological loss-of-function may result from their early degradation. Since the proof of concept in the 2000s, the bioinspired pharmacological chaperone therapy became a relevant low-molecular-weight compound strategy against conformational diseases. The first-generation pharmacological chaperones were competitive inhibitors of mutant enzymes. Counterintuitively, in binding to the active site, these inhibitors stabilize the proper folding of the mutated protein and partially rescue its cellular function. The main limitation of the first-generation pharmacological chaperones lies in the balance between enzyme activity enhancement and inhibition. Recent research efforts were directed towards the development of promising second-generation pharmacological chaperones. These non-inhibitory ligands, targeting previously unknown binding pockets, limit the risk of adverse enzymatic inhibition. Their pharmacophore identification is however challenging and likely requires a massive screening-based approach. This review focuses on second-generation chaperones designed to restore the cellular activity of misfolded enzymes. It intends to highlight, for a selected set of rare inherited metabolic disorders, the strategies implemented to identify and develop these pharmacologically relevant small organic molecules as potential drug candidates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397201PMC
http://dx.doi.org/10.3390/molecules25143145DOI Listing

Publication Analysis

Top Keywords

pharmacological chaperones
16
second-generation pharmacological
8
conformational diseases
8
first-generation pharmacological
8
chaperones
5
chaperones inhibitors
4
inhibitors protein
4
protein misfolding
4
misfolding induced
4
induced missense
4

Similar Publications

Cellular prion protein (PrP) is a glycoprotein tethered to the plasma membrane via a GPI-anchor, and it plays a crucial role in prion diseases by undergoing conformational change to PrP. To generate a knock-in (KI) mouse model expressing bank vole PrP (BVPrP), a KI targeting construct was designed. However, a Prnp gene sequence that encodes PrP lacking seven C-terminal amino acid residues of the GPI-anchoring signal sequence (GPI-SS) was unintentionally introduced into the construct.

View Article and Find Full Text PDF

Rainbow trout(Oncorhynchus mykiss) is a typical cold-water fish often threatened by high summer temperatures. Nano-selenium as a feed additive can improve the antioxidant capacity of the body and relieve stress. In this study, different levels of nano-selenium (0, 5 and 10 mg/kg) were added to the feed of rainbow trout to determine the changes in spleen structure and expression of related genes in rainbow trout at the proper temperature (18℃) and heat stress temperature (24℃).

View Article and Find Full Text PDF

Background: Sepsis-Associated Encephalopathy (SAE) is a severe neurological complication of sepsis, where neuroinflammation plays a critical pathogenic role, leading to cognitive dysfunction. The Sigma-1 receptor (Sigma-1R), a chaperone protein, is implicated in neuroprotection, including the crucial modulation of neuroinflammation and endoplasmic reticulum stress (ERS). This study aimed to investigate the therapeutic potential of the Sigma-1R agonist, PRE-084, in specifically targeting SAE-associated neuroinflammation and its downstream neuropathology.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are pervasively present in human cancers and have a fundamental role in treatment failure and disease recurrence. Identifying critical elements that sustain the CSC phenotype may lead to novel strategies for cancer treatment. Here, we provide evidence of an essential link between the σ receptor (σR), a ligand-regulated chaperone protein residing preferentially at the endoplasmic reticulum-mitochondria contact sites, and CSCs in castration-resistant prostate cancers (CRPCs).

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) remains a leading cause of cancer-related mortality worldwide, with pro-tumor inflammation playing a critical role in its initiation and progression. Chronic inflammation acts as a major driving force and a distinct mechanism underlying tumorigenesis. Although previous studies have demonstrated the importance of the VEGF/p38MAPK and p38MAPK/HSP27 signaling pathways in CRC-associated inflammation, a comprehensive understanding of the entire pro-tumor inflammatory mechanism remains incomplete.

View Article and Find Full Text PDF