Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Magnetic nanoparticles offer a unique potential for various biomedical applications, but prior to commercial usage a standardized characterization of their structural and magnetic properties is required. For a thorough characterization, the combination of conventional magnetometry and advanced scattering techniques has shown great potential. In the present work, we characterize a powder sample of high-quality iron oxide nanoparticles that are surrounded with a homogeneous thick silica shell by DC magnetometry and magnetic small-angle neutron scattering (SANS). To retrieve the particle parameters such as their size distribution and saturation magnetization from the data, we apply standard model fits of individual data sets as well as global fits of multiple curves, including a combination of the magnetometry and SANS measurements. We show that by combining a standard least-squares fit with a subsequent Bayesian approach for the data refinement, the probability distributions of the model parameters and their cross correlations can be readily extracted, which enables a direct visual feedback regarding the quality of the fit. This prevents an overfitting of data in case of highly correlated parameters and renders the Bayesian method as an ideal component for a standardized data analysis of magnetic nanoparticle samples.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aba57bDOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
8
magnetic
5
data
5
benefits bayesian
4
bayesian analysis
4
analysis characterization
4
characterization magnetic
4
nanoparticles magnetic
4
nanoparticles offer
4
offer unique
4

Similar Publications

Inorganic nanomaterial-based peroxidase mimics have recently emerged as promising alternatives to natural peroxidases for enhancing the detection sensitivity of bioassays, such as enzyme-linked immunosorbent assay (ELISA). Among them, magnetically active peroxidase mimics are particularly advantageous due to their ability to facilitate efficient separation and enrichment of target analytes. However, most reported magnetic peroxidase mimics suffer from limited catalytic efficiency and stability.

View Article and Find Full Text PDF

Bismuth ferrite (BiFeO), a perovskite oxide with both ferroelectric and antiferromagnetic properties, has emerged as a promising material for environmental cleanup due to its piezo-photocatalytic activity. The material's ability to degrade organic pollutants, such as azo dyes, under both light irradiation and mechanical stress (ultrasonic waves) offers a dual-action mechanism for efficient wastewater treatment. In this work, we explore the synthesis of BiFeO nanoparticles a simple sol-gel method, followed by characterization of their structural, magnetic, and photocatalytic properties.

View Article and Find Full Text PDF

Ceric Ammonium Nitrate Immobilized on Linoleic Acid-Functionalized FeO Nanoparticles as a Magnetically Recyclable Catalyst for C3-Selective Formylation of N-H Indoles.

ACS Omega

September 2025

Creative Chemistry and Innovation Research Unit,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand.

In this study, a novel magnetically recyclable catalyst was developed by immobilizing ceric ammonium nitrate (CAN) onto linoleic acid-functionalized magnetite nanoparticles (FeO-LA@CAN). The catalyst was thoroughly characterized using FT-IR, XRD, TEM, SEM-EDX, VSM, TGA, and N adsorption-desorption analyses. The catalytic efficiency of FeO-LA@CAN was evaluated in the C3-selective formylation of free (N-H) indole derivatives, exhibiting excellent activity and broad substrate scope.

View Article and Find Full Text PDF

Purpose: This study investigates the antibacterial and anticancer activity of previously reported iron oxide (FeO)-based nanoparticles (NPs) conjugated with chlorin e6 and folic acid (FCF) in photodynamic therapy (PDT) using a human bladder cancer (BC) (T-24) cell line and three bacterial strains.

Method: To investigate the potential applicability of the synthesized NPs as therapeutic agents for image-based photodynamic BC therapy, their photodynamic anticancer activity was analyzed and the mechanisms of cell death in T-24 cells treated with these NPs were assessed qualitatively and quantitatively through atomic absorption spectroscopy, fluorescence imaging, and transmission electron microscopy.

Results: The effective localization of FCF NPs in T-24 cells were confirmed, validating their excellent cellular fluorescence and magnetic resonance imaging capabilities.

View Article and Find Full Text PDF

Self-Propelled Magnetic Micromotor-Functionalized DNA Tile System for Autonomous Capture of Circulating Tumor Cells in Clinical Diagnostics.

Adv Sci (Weinh)

September 2025

Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.

Circulating tumor cells (CTCs) carry intact tumor molecular information, making them invaluable for personalized cancer monitoring. However, conventional capture methods, relying on passive diffusion, suffer from low efficiency due to insufficient collision frequency, severely limiting clinical utility. Herein, a magnetic micromotor-functionalized DNA-array hunter (MMDA hunter) is developed by integrating enzyme-propelled micromotors, magnetic nanoparticles, and nucleic acid aptamers into distinct functional partitions of a DNA tile self-assembly structure.

View Article and Find Full Text PDF