Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While the ecosystem of the Great Barrier Reef (GBR), north-eastern Australia, is being threatened by the elevated levels of sediments and nutrients discharged from adjacent coastal river systems, the source of these detrimental pollutants are not well understood. Here we used a combined isotopic (δC, δN) and geochemical (Zn, Pt and S) signatures and stable isotope analysis in R (SIAR) mixing model to estimate the contribution of different land uses to the sediment and associated particulate nitrogen delivered to the Johnstone River. Results showed that rainforest was the largest contributor of suspended and bed sediments in the river estuary (both 33.1%), followed by banana (26.7%, 20.4%), sugarcane (21.5%, 21.4%) and grazing (18.7%, 25.1%). However, bananas and sugarcane land uses had the highest contribution to sediments delivered to the coast per unit of area. This will help land managers to prioritise on-ground activities to improve water quality in the GBR lagoon.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2020.111344DOI Listing

Publication Analysis

Top Keywords

sediment associated
8
associated particulate
8
particulate nitrogen
8
johnstone river
8
north-eastern australia
8
tracing sources
4
sources sediment
4
land
4
nitrogen land
4
land johnstone
4

Similar Publications

The northern South China Sea (SCS) shelf and southern Taiwan Strait (TS) are dynamic marginal seas influenced by both freshwater discharge from the Pearl River and seasonal coastal upwelling. These interacting hydrological forces shape ecological gradients that affect marine planktonic communities. Planktonic foraminiferal assemblages were analyzed from plankton tow and surface sediment samples collected during three cruises (2018, 2020, and 2022) along a ∼1000 km transect extending from the Pearl River estuary to the southern TS.

View Article and Find Full Text PDF

Drought and liming impacts of mine-impacted wetland sediments.

Ecotoxicol Environ Saf

September 2025

CanmetMINING, Natural Resources Canada, Ottawa, ON, Canada. Electronic address:

Acid mine drainage (AMD) is a serious environmental problem at legacy and active mine sites around the world. Climate associated drought and rewetting events can increase the severity of AMD impacts through oxidation and release of stored metal(loid)s and acidity from contaminated sediments. The area surrounding Sudbury, Ontario, with its massive mining and smelting complexes, appears especially vulnerable to drought-driven effects.

View Article and Find Full Text PDF

Characterization of biogeochemical cycles in agricultural watersheds: Integrating regional modelling assessment with downstream water quality.

J Environ Manage

September 2025

Ecological Modelling Laboratory, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada. Electronic address:

Agriculture intensification represents an essential strategy to ensure food security for the growing human population, but it also poses considerable environmental concerns. Climate change and associated projections of an increased frequency of extreme precipitation and runoff events may amplify nutrient dynamics along the watershed-lake continuum, and could further exacerbate the poor water quality conditions downstream. Identifying hotspot locations with higher propensity for sediment and nutrient export and designing effective mitigation measures at the source is more critical than ever.

View Article and Find Full Text PDF

Integrated use of histological and hormonal biomarkers to assess metal contamination in Leporinus friderici from mining areas in the Amazon.

Chemosphere

September 2025

Laboratório de Imuno-histoquímica e Biologia Do Desenvolvimento, Instituto de, Ciências Biológicas, Universidade Federal Do Pará, 66075-110, Belém, Pará, Brazil. Electronic address:

High natural concentrations of metals in Amazonian soils, combined with rainfall, increase metal availability in rivers and streams. This study objective was the environmental quality of two microbasins using integrated biomarkers in Leporinus friderici. Water, sediment, and fish samples were collected during the rainy and dry seasons from the Parariquara and Potiritá river microbasins, located near an area of mining in Paragominas, Pará, Brazil.

View Article and Find Full Text PDF

An increase in para-chloro-meta-xylenol (PCMX) pollution presents a significant obstacle to ecological security. The present study employed a series of microcosmic experiments to investigate the temporal dynamics of NO emissions and key genes involved in nitrogen cycle during the biodegradation process of PCMX. The results demonstrated that the degradation of PCMX exhibited first-order kinetics, with a calculated half-life of 231 days.

View Article and Find Full Text PDF