Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, the self-assembly behavior of polyelectrolyte (PE) diblock copolymers in solutions containing mixtures of monovalent and multivalent counterions was investigated using molecular dynamics simulation. The properties of the assembled micelles and counterion condensations at different charge fractions of multivalent ions have been discussed. The bridging effect of multivalent ions induces the electrostatic correlations of the PE chains, leading to the fusion of large micelles and the formation of bulky aggregates. Notably, lamellar and well-organized face-centered cubic (FCC) arrangements of the assembled micelles were observed in the mixture of monovalent and trivalent ions. At large fractions of multivalent ions, cylindrical and lamellar precipitates composed of the assembled micelles were formed owing to the inter-connecting coronas. The mixtures of monovalent and multivalent counterions allow the regulation of the electrostatic interactions and tuning of the properties in assembled micelles.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp01019gDOI Listing

Publication Analysis

Top Keywords

assembled micelles
16
mixtures monovalent
12
monovalent multivalent
12
multivalent counterions
12
multivalent ions
12
polyelectrolyte diblock
8
diblock copolymers
8
properties assembled
8
fractions multivalent
8
multivalent
6

Similar Publications

Molecular Insights into the Reversible Mechanisms of CO-Switchable Surfactant Solubilization and Emulsification.

Langmuir

September 2025

Polymer Research Institute, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.

Switchable surfactants exhibit broad application potential due to their reversible response to external stimuli. The reversible mechanism of the CO-switchable surfactant ('-dodecyl-, -dimethyl-acetamidines, DDA) solubilization polycyclic aromatic hydrocarbons (PAHs) and the microscopic dynamic behavior of emulsification/demulsification were systematically studied using coarse-grained molecular dynamics simulations. The dynamic transition processes of protonation (DDA to DDA) and deprotonation (DDA to DDA) were successfully simulated.

View Article and Find Full Text PDF

Time-Resolved Small-Angle X-Ray Studies of Spherical Micelle Formation and Growth During Polymerization-Induced Self-Assembly in Polar Solvents.

Small

September 2025

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South Chi

Self-assembled poly(2-dimethylaminoethyl methacrylate)-poly(2-(diisopropylamino)ethyl methacrylate) (PDMA-PDPA) diblock copolymer nanoparticles are widely employed in biological applications, driving the need for a robust and scalable production method. Although polymerization-induced self-assembly (PISA) enables efficient nanoparticle synthesis at high solids content, its research and application to PDMA-PDPA are limited, likely due to kinetic trapping. Leveraging our recently developed generic time-resolved small-angle X-ray scattering (TR-SAXS) approach for PISA in non-polar media, a reversible addition-fragmentation chain transfer-mediated PDMA-PDPA PISA process in polar solvent that produces spherical micelles is examined.

View Article and Find Full Text PDF

Microbial surfactants (biosurfactants) are low-molecular-weight amphiphilic secondary metabolites synthesized by a wide range of micro-organisms, including bacteria, yeasts and fungi. These compounds reduce surface and interfacial tension, promote emulsification and self-assemble into supramolecular structures such as micelles. Their remarkable structural diversity reflects the metabolic complexity of their microbial producers.

View Article and Find Full Text PDF

Ion Luminescent Micelles: A Surfactant-Mediated Double-End Signal Amplification Strategy for Portable Detection of Phoxim.

Anal Chem

September 2025

State Key Laboratory of Green Chemical Synthesis and Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China.

Residues of organophosphorus pesticides (OPs) raise considerable concern, while achieving high enough detection sensitivity is still a challenge for on-site fluorescence techniques. Herein, we report a "double-end samplification" strategy by encapsulating a low-emission fluorescent ion probe [DCF][P] into a cetyltrimethylammonium bromide (CTAB) hydrophobic core to form ionic luminescent micelles. At the probe end, ionic liquid micelles locally concentrated the probes, achieving a 350-fold fluorescence enhancement.

View Article and Find Full Text PDF

Submicron-oleogel particles for enhanced oral delivery of hydrophobic compounds: and proof of concept.

Mater Today Bio

October 2025

Laboratory of Food Materials Engineering, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.

Oral administration is the preferred route for drug and bioactive delivery, although it raises great challenges due to the involvement of the gastrointestinal system and limited bioavailability. Herein, a novel submicron-oleogel particle system was developed using micro-structured edible oil to address the challenges associated with the low bioavailability of oral hydrophobic compounds. Oleogel particles were prepared using β-sitosterol and γ-oryzanol as oil structuring agents with dispersed dasatinib as a model drug.

View Article and Find Full Text PDF