98%
921
2 minutes
20
genes are commonly known for their role in embryonic development, defining the positional identity of most structures along the anterior-posterior axis. In postembryonic life, gene aberrant expression can affect several processes involved in tumorigenesis such as proliferation, apoptosis, migration and invasion. Epigenetic modifications are implicated in gene expression deregulation, and it is accepted that methylation events affecting gene expression play crucial roles in tumorigenesis. In fact, specific methylation profiles in the gene sequence or in -associated histones are recognized as potential biomarkers in several cancers, helping in the prediction of disease outcomes and adding information for decisions regarding the patient's treatment. The methylation of some genes can be associated with chemotherapy resistance, and its identification may suggest the use of other treatment options. The use of epigenetic drugs affecting generalized or specific DNA methylation profiles, an approach that now deserves much attention, seems likely to be a promising weapon in cancer therapy in the near future. In this review, we summarize these topics, focusing particularly on how the regulation of epigenetic processes may be used in cancer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408435 | PMC |
http://dx.doi.org/10.3390/cells9071613 | DOI Listing |
Nano Lett
September 2025
Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.
Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Oncostat U1018, Institut National de la Santé et de la Recherche Médicale (INSERM), Ligue Contre le Cancer, Paris-Saclay University, Villejuif, France.
Importance: Antibiotics, steroids, and proton pump inhibitors (PPIs) are suspected to decrease the efficacy of immunotherapy.
Objective: To explore the association of comedications with overall survival (OS) in patients with advanced non-small-cell lung cancer (NSCLC).
Design, Setting, And Participants: This nationwide retrospective cohort study used target trial emulations of patients newly diagnosed with NSCLC from January 2015 to December 2022, identified from the French national health care database.
JAMA Dermatol
September 2025
Department of Dermatology, University of Washington, Seattle.
Importance: Merkel cell carcinoma (MCC) is typically caused by the Merkel cell polyomavirus (MCPyV) and recurs in 40% of patients. Half of patients with MCC produce antibodies to MCPyV oncoproteins, the titers of which rise with disease recurrence and fall after successful treatment.
Objective: To assess the utility of MCPyV oncoprotein antibodies for early detection of first recurrence of MCC in a real-world clinical setting.
Pharmacoeconomics
September 2025
Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden.
Background: Immune checkpoint inhibitors (ICIs) are clinically beneficial but associated with high costs that represent a growing challenge for healthcare budgets and may affect affordability, especially in resource-limited settings. Moreover, the healthcare sector is a significant source of greenhouse gas emissions, and medication-related waste-such as that from vial-based therapies-has been identified as a contributing factor. Alternative dosing strategies could reduce the environmental and financial impact of ICI therapy while maintaining clinical safety and efficacy.
View Article and Find Full Text PDFMol Biol Rep
September 2025
School of Arts and Sciences, Department of Natural and Applied Sciences, The American University of Iraq-Baghdad, Baghdad, Iraq.
The COVID-19 pandemic, caused by the continuously evolving SARS-CoV-2 virus, has presented persistent global health challenges. As novel variants emerge, many with enhanced transmissibility and immune evasion capabilities, concerns have intensified regarding the efficacy of existing vaccines and therapeutics. This review provides a comprehensive overview of the current landscape of COVID-19 vaccination, including the development and performance of monovalent and bivalent boosters, and examines their effectiveness against newly emerging variants of interest (VOIs) and variants under monitoring (VUMs), such as JN.
View Article and Find Full Text PDF