Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Warm ischemia and reperfusion injury (IRI) is a prognostic factor in donation after cardiac death donor transplantation. However, a reliable method to predict IRI before transplantation has not been established. The aim of this study was to identify predictive markers of hepatic IRI by simultaneous measurement of endogenous molecules using matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). Rats were subjected to hepatic warm ischemia (70%) for 30 or 90 minutes and subsequent reperfusion. The livers were collected at the end of ischemia and 1 hour, 6 hours, and 24 hours after reperfusion. The liver tissue sections were applied to IMS (m/z 200-2000). Candidate molecules were identified by tandem mass spectrometry. Imaging mass spectrometry (IMS) revealed a significant increase in the taurine conjugates of dihydroxycholanoic acid (TDHCA) during ischemia and a tendency to return to the basal level after reperfusion. Notably, high-resolution measurements revealed focal accumulation of TDHCA in the intrahepatic bile duct with ischemic time. In conclusion, IMS is a useful method to detect minute changes provoked by ischemia, which are barely detectable in assays involving homogenization. Accordingly, focal accumulation of TDHCA during ischemia may be a candidate marker for predicting later IRI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.transproceed.2020.01.169DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
16
warm ischemia
12
imaging mass
8
taurine conjugates
8
conjugates dihydroxycholanoic
8
dihydroxycholanoic acid
8
hepatic warm
8
ischemia reperfusion
8
tdhca ischemia
8
focal accumulation
8

Similar Publications

Aberrant activation of fibroblast growth factor receptors (FGFRs) plays a critical role in tumorigenesis across multiple cancer types, driving the development of various FGFR inhibitors. Despite clinical advances, therapeutic efficacy remains limited by the emergence of drug resistance, primarily mediated by gatekeeper mutations in FGFRs. To overcome this challenge, we designed and synthesized a novel series of 7-(1-methyl-1-indole-3-yl)-5-pyrrolo[2,3-]pyrazine derivatives as covalent pan-FGFR inhibitors targeting both wild-type and gatekeeper mutants.

View Article and Find Full Text PDF

Argemone mexicana is one of the known herbaceous plants hosting bioactive isoquinoline alkaloids. In the current study, an endophytic fungal isolate was studied for anti-inflammatory potential and the identification of its bioactive molecule. An endophytic fungus AMEF-14 was obtained from this plant and identified as Cladosporium ramotenellum based on microscopy and molecular tools.

View Article and Find Full Text PDF

Strategies have been employed to address antimalarial drug resistance, including the exploration of new therapeutic targets. In this study, the stem bark of Dalbergia miscolobium was investigated using in vitro assays against Plasmodium falciparum and pyruvate kinase II (PyrKII), an essential enzyme for parasite development. Compounds were dereplicated from ethanolic extract (IC  = 9 µg/mL) using LC-HRMS, revealing active constituents: procyanidin A1 (2), biochanin (5) and formononetin (7).

View Article and Find Full Text PDF

Note: An Integrated Miniature Time-of-Flight Mass Spectrometer System with 3D Printing Assisted Design of Versatile Pocket-Size Laser-Induced Acoustic Desorption Source.

J Am Soc Mass Spectrom

September 2025

Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China.

An integrated miniature time-of-flight mass spectrometer (TOF-MS) system coupled with a pocket-size 3D-printed laser-induced acoustic desorption (LIAD) source is described. This 3D-printed LIAD source utilizes only a miniature deceleration motor to achieve two-dimensional motion of the target surface, simplifying the source structure and improving the long-term stability of mass spectrometry measurements. It has been successfully applied to analyze the model molecule creatinine and ingredients in an energy beverage (Red Bull), where main natural nutrients were clearly identified.

View Article and Find Full Text PDF

Precisely structured nanoclusters provide ideal platforms for elucidating structural evolution and structure-activity relationships. However, mechanistic understanding of dynamic core-shell rearrangements has long been impeded by the elusive nature of intermediates during transformation processes. Here, we show that ligand engineering-driven asymmetric thiolate exchange enables atomic-level visualization of structural evolution, thereby overcoming the long-standing challenge of intermediate capture.

View Article and Find Full Text PDF