Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Manipulating the surface structure of electrocatalysts at the atomic level is of primary importance to simultaneously achieve the activity and stability dual-criteria in oxygen reduction reaction (ORR) for proton exchange membrane fuel cells. Here, a durable acidic ORR electrocatalyst with the "defective-armored" structure of Pt shell and Pt-Ni core nanoparticle decorated on graphene (Pt-Ni@Pt /G) using a facile and controllable galvanic replacement reaction to generate gradient distribution of Pt-Ni composition from surface to interior, followed by a partial dealloying approach, leaching the minor nickel atoms on the surface to generate defective Pt skeleton shell, is reported. The Pt-Ni@Pt /G catalyst shows impressive performance for ORR in acidic (0.1 m HClO ) electrolyte, with a high mass activity of threefold higher than that of Pt/C catalyst owing to the tuned electronic structure of locally concave Pt surface sites through synergetic contributions of Pt-Ni core and defective Pt shell. More importantly, the electrochemically active surface areas still retain 96% after 20 000 potential cycles, attributing to the Pt atomic shell acting as the protective "armor" to prevent interior Ni atoms from further dissolution during the long-term operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202003493 | DOI Listing |