98%
921
2 minutes
20
Interferon Regulatory Factor 5 (IRF5) is one of nine members of the IRF family of transcription factors. Although initially discovered as a key regulator of the type I interferon and pro-inflammatory cytokine arm of the innate immune response, IRF5 has now been found to also mediate pathways involved in cell growth and differentiation, apoptosis, metabolic homeostasis and tumor suppression. Hyperactivation of IRF5 has been implicated in numerous autoimmune diseases, chief among them systemic lupus erythematosus (SLE). SLE is a heterogeneous autoimmune disease in which patients often share similar characteristics in terms of autoantibody production and strong genetic risk factors, yet also possess unique disease signatures. pathogenic alleles contribute one of the strongest risk factors for SLE disease development. Multiple models of murine lupus have shown that loss of is protective against disease development. In an attempt to elucidate the regulatory role(s) of IRF5 in driving SLE pathogenesis, labs have begun to examine the function of IRF5 in several immune cell types, including B cells, macrophages, and dendritic cells. A somewhat untouched area of research on IRF5 is in T cells, even though knockout mice were reported to have skewing of T cell subsets from T helper 1 (Th1) and T helper 17 (Th17) toward T helper 2 (Th2), indicating a potential role for IRF5 in T cell regulation. However, most studies attributed this T cell phenotype in knockout mice to dysregulation of antigen presenting cell function rather than an intrinsic role for IRF5 in T cells. In this review, we offer a different interpretation of the literature. The role of IRF5 in T cells, specifically its control of T cell effector polarization and the resultant T cell-mediated cytokine production, has yet to be elucidated. A strong understanding of the regulatory role(s) of this key transcription factor in T cells is necessary for us to grasp the full picture of the complex pathogenesis of autoimmune diseases like SLE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283537 | PMC |
http://dx.doi.org/10.3389/fimmu.2020.01143 | DOI Listing |
Sci Adv
September 2025
Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
Grain size substantially influences rice quality and yield. In this study, we identified (), a quantitative trait locus encoding an F-box protein that enhances grain length by promoting cell proliferation. The transcription factor OsbZIP35 represses expression, while COR1 interacts with OsTCP19, leading to its degradation.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea.
Epidermal growth factor receptor (EGFR) dimerization plays a pivotal role in cellular signaling, influencing proliferation and disease progression, particularly in cancer. Despite extensive studies, the quantitative relationship between EGFR expression levels and dimerization efficiency remains incompletely understood. In this study, we investigated EGFR dimerization kinetics using ensemble-level biochemical assays and single-molecule tracking (SMT) in living cells.
View Article and Find Full Text PDFAnn Acad Med Singap
August 2025
National Neuroscience Institute, Singapore.
Introduction: While traditional Chinese medicine (TCM) has a long history and continues to be widely practised, its overall clinical efficacy according to conventional scientific standards remains the topic of ongoing research and exploration. This review focuses on the potential use of acupuncture and Chinese herbal medicine (CHM) in combination with Western medicine in Singapore, based on recently published data on the clinical effectiveness and cost-effectiveness of these TCM treatments.
Method: We collated and summarised 71 research papers published in the past decade, focusing on randomised controlled trials, systematic reviews and population-based cohort studies that had a total sample size (treatment and control arms) exceeding 60.
Elife
September 2025
Human Biology and Primate Evolution, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.
View Article and Find Full Text PDFMol Cell Biochem
September 2025
Peking University Third Hospital, Beijing, China.
Cardiovascular-Kidney-Metabolic (CKM) syndrome, a newly defined systemic disorder, is characterized by the pathological interplay among diabetes, chronic kidney disease (CKD), and cardiovascular disease (CVD). Recent studies have identified chronic inflammation not only as a central mediator in the pathological progression of CKM syndrome but also as a pivotal molecular hub that drives coordinated damage across multiple organ systems. Mechanistic investigations have revealed that aberrant activation of signaling pathways such as NF-κB, Wnt, PI3K-AKT, JAK-STAT, and PPAR constitutes a complex inflammatory regulatory network.
View Article and Find Full Text PDF