Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigates the influence expression of the MYCN oncogene has on the DNA damage response, replication fork progression and sensitivity to PARP inhibition in neuroblastoma. In a panel of neuroblastoma cell lines, amplification or MYCN expression resulted in increased cell death in response to a range of PARP inhibitors (niraparib, veliparib, talazoparib and olaparib) compared to the response seen in non-expressing/amplified cells. MYCN expression slowed replication fork speed and increased replication fork stalling, an effect that was amplified by PARP inhibition or PARP1 depletion. Increased DNA damage seen was specifically induced in S-phase cells. Importantly, PARP inhibition caused a significant increase in the survival of mice bearing MYCN expressing tumours in a transgenic murine model of MYCN expressing neuroblastoma. Olaparib also sensitized MYCN expressing cells to camptothecin- and temozolomide-induced cell death to a greater degree than non-expressing cells. In summary, MYCN expression leads to increased replication stress in neuroblastoma cells. This effect is exaggerated by inhibition of PARP, resulting in S-phase specific DNA damage and ultimately increased tumour cell death. PARP inhibition alone or in combination with classical chemotherapeutics is therefore a potential therapeutic strategy for neuroblastoma and may be more effective in MYCN expressing tumours.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289530PMC
http://dx.doi.org/10.18632/oncotarget.27329DOI Listing

Publication Analysis

Top Keywords

parp inhibition
20
mycn expression
16
mycn expressing
16
dna damage
12
replication fork
12
cell death
12
mycn
9
replication stress
8
sensitivity parp
8
inhibition neuroblastoma
8

Similar Publications

Among the most pervasive malignancies affecting females worldwide, breast cancer is responsible for approximately 2.2 million new diagnoses and over 660,000 fatalities reported annually. Natural products represent an invaluable resource for the identification and development of potential innovative anti-cancer pharmaceuticals.

View Article and Find Full Text PDF

PARP inhibitors play a crucial role in cancer therapy, with PARP7 emerging as a promising target for immunotherapy by modulating the cGAS-STING pathway. In this study, the piperazine ring of Olaparib was replaced with a bicyclo[1.1.

View Article and Find Full Text PDF

Ovarian and endometrial cancers frequently harbor a mutation in the tumor suppressor gene TP53, which occurs in over 90 % of ovarian cancers and in the most aggressive endometrial cancers. The normal tumor suppressive functions of p53 are disrupted, resulting in unregulated cell growth and therapeutic resistance to standard treatments including chemotherapy and PARP inhibitors. Hence, a novel therapeutic strategy is urgently needed for p53 mutant gynecologic cancers, and we propose that converting mutant p53 to a wild type conformation and restoring its tumor suppressive functions has the potential to greatly improve treatment.

View Article and Find Full Text PDF

Targeting KCNN4 channels modulates microglial activation and apoptosis in a PD-relevant inflammatory model.

Biomed Pharmacother

September 2025

Department and Graduate Institute of Pharmacology, College of Pharmacy, National Defense Medical University, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical University, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, National Defense M

Parkinson's disease (PD) is characterized by chronic neuroinflammation and progressive dopaminergic neurodegeneration, driven primarily by the activation of microglia and associated apoptotic pathways. The intermediate-conductance calcium-activated potassium channel KCNN4 has recently emerged as a potential therapeutic target, yet its role in chronic neurodegenerative conditions remains underexplored. In this study, we investigated whether pharmacological inhibition of KCNN4 using TRAM-34 can modulate both inflammatory and apoptotic responses in an LPS-induced mouse model of PD.

View Article and Find Full Text PDF

The Fritillaria alkaloid peiminine acts as a chemosensitizer to potentiate oxaliplatin efficacy against gastric cancer.

Pathol Res Pract

September 2025

Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medica

Background: Fritillaria walujewii Regel (Xinjiang Bei-Mu), an authentic ("Dao-di") medicinal herb documented in Chinese pharmacopoeias, is traditionally used to treat respiratory disorders. Its principal steroidal alkaloid, peiminine (PMI), demonstrates significant anticancer activity. Oxaliplatin (Oxa), a first-line chemotherapeutic cornerstone for gastric cancer (GC), is limited clinically by intrinsic chemoresistance.

View Article and Find Full Text PDF