Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human immunodeficiency virus (HIV), a type of lentivirus (a subgroup of retrovirus), causes acquired immunodeficiency syndrome (AIDS). This pathophysiologic state destroys the immune system allowing opportunistic infections, cancer and other life-threatening diseases to thrive. Although many analytic tools including enzyme-linked immunoassay (ELISA), indirect and line immunoassay, Western blotting, radio-immunoprecipitation, nucleic acid amplification testing (NAAT) have been developed to detect HIV, recent developments in nanosensor technology have prompted its use as a novel diagnostic approach. Nanosensors provide analytical information about behavior and characteristics of particles by using biochemical reactions mediated by enzymes, immune components, cells and tissues. These reactions are transformed into decipherable signals, i.e., electrical, thermal, optical, using nano to micro scale technology. Nanosensors are capable of both quantitative and qualitative detection of HIV, are highly specific and sensitive and provide rapid reproducible results. Nanosensor technology can trace infant infection during mother-to-child transmission, the latent HIV pool and monitor anti-HIV therapy. In this chapter, we review nanosensor analytics including electrochemical, optical, piezoelectric, SERS-based lateral flow assay, microfluidic channel-based biosensors in the detection of HIV. Other techniques in combination with different biorecognition elements (aptamers, antibodies, oligonucleotides) are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.acc.2020.02.001DOI Listing

Publication Analysis

Top Keywords

nanosensor technology
8
detection hiv
8
hiv
6
biosensor platforms
4
platforms rapid
4
rapid hiv
4
hiv detection
4
detection human
4
human immunodeficiency
4
immunodeficiency virus
4

Similar Publications

A versatile fluorescent molecularly imprinted nanosensor (MIPs@O-CDs) for profiling ciprofloxacin (CIP) was innovatively developed using a controllable post-imprinting modification strategy. High-affinity molecularly imprinted polymers (MIPs) as recognition elements granted nanosensor favorable anti-interference. Bright orange-emission carbon dots (O-CDs) as signal transducers demonstrated prominent reverse fluorescence response to CIP due to inner filter effect, ameliorating detection sensitivity and accuracy.

View Article and Find Full Text PDF

Nanotechnology is revolutionizing medicine by enabling highly precise diagnostics, targeted therapies, and personalized healthcare solutions. This review explores the multifaceted applications of nanotechnology across medical fields such as oncology and infectious disease control. Engineered nanoparticles (NPs), such as liposomes, polymeric carriers, and carbon-based nanomaterials, enhance drug solubility, protect therapeutic agents from degradation, and enable site-specific delivery, thereby reducing toxicity to healthy tissues.

View Article and Find Full Text PDF

In cells, many small molecules are membrane-permeant. This feature opens a road to analyze their flux of production or consumption by quantitatively interpreting the map of their extracellular concentration within a reaction-diffusion frame. Here, this approach is implemented with a new wide-field lifetime imaging protocol applied to single microalgae cells sparsely deposited on an agarose pad loaded with a luminescent dioxygen (O) nanosensor.

View Article and Find Full Text PDF

Molecularly imprinted polymers (MIPs) have emerged as robust, cost-effective analogues of bioreceptors, offering high selectivity and stability. When applied in sensors, one key step is the integration of MIPs with the transducer, which critically affects sensor performance. Demanding challenges come when such integration involves nanoscaling processes, meaning that the transducer is nanostructured or the MIP itself is nanosized on a bulk transducer.

View Article and Find Full Text PDF

An extensive study on the laser power limiting behavior of para-aminobenzoic acid (PABA) combined with silver nanoparticles (PABA + AgNPs) was done and reported in this article. The XRD spectra for PABA + AgNPs confirm its crystalline structure. The absorption spectra of AgNPs and PABA + AgNPs indicate complete stability of the samples.

View Article and Find Full Text PDF