Host-targeted nitazoxanide has a high barrier to resistance but does not reduce the emergence or proliferation of oseltamivir-resistant influenza viruses in vitro or in vivo when used in combination with oseltamivir.

Antiviral Res

WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia; The University of Melbourne, Department of Microbiology and Immunology, Parkville, Victoria, 3010, Australia.

Published: August 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A major limitation of the currently available influenza antivirals is the potential development of drug resistance. The adamantanes, neuraminidase inhibitors, and more recently polymerase inhibitors, have all been associated with the emergence of viral resistance in preclinical, clinical studies or in clinical use. As a result, host-targeted drugs that act on cellular proteins or functions have become an attractive option for influenza treatment as they are less likely to select for resistance. Nitazoxanide (NTZ) is a host-targeted antiviral that is currently in Phase III clinical trials for the treatment of influenza. In this study, we investigated the propensity for circulating influenza viruses to develop resistance to nitazoxanide in vitro by serially passaging viruses under selective pressure. Phenotypic and genotypic analysis of viruses passaged ten times in the presence of up to 20 μM tizoxanide (TIZ; the active metabolite of nitazoxanide) showed that none had a significant change in TIZ susceptibility, and amino acid substitutions arising that were unique to TIZ passaged viruses, did not alter TIZ susceptibility. Combination therapy, particularly utilising drugs with different mechanisms of action, is another option for combatting antiviral resistance, and while combination therapy has been shown to improve antiviral effects, the effect of reducing the emergence and selection of drug-resistant virus has been less widely investigated. Here we examined the use of TIZ in combination with oseltamivir, both in vitro and using the ferret model for influenza infection and found that the combination of the two drugs did not provide significant benefit in reducing the emergence or selection of oseltamivir-resistant virus. These in vitro findings suggest that clinical use of NTZ may be significantly less likely to select for resistance in circulating influenza viruses compared to virus-targeted antivirals, and although the combination of NTZ with oseltamivir did not reduce the emergence of oseltamivir-resistant virus in vitro or in vivo, combination therapy with NTZ and other newer classes of influenza antiviral drugs should be considered due to NTZ's higher host-based barrier to resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2020.104851DOI Listing

Publication Analysis

Top Keywords

influenza viruses
12
combination therapy
12
resistance
8
barrier resistance
8
reduce emergence
8
influenza
8
vitro vivo
8
vivo combination
8
combination oseltamivir
8
select resistance
8

Similar Publications

Analyzing Reddit Social Media Content in the United States Related to H5N1: Sentiment and Topic Modeling Study.

J Med Internet Res

September 2025

Artificial Intelligence and Mathematical Modeling Lab, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.

Background: The H5N1 avian influenza A virus represents a serious threat to both animal and human health, with the potential to escalate into a global pandemic. Effective monitoring of social media during H5N1 avian influenza outbreaks could potentially offer critical insights to guide public health strategies. Social media platforms like Reddit, with their diverse and region-specific communities, provide a rich source of data that can reveal collective attitudes, concerns, and behavioral trends in real time.

View Article and Find Full Text PDF

Matrix Protein 1 (M1) of Influenza A Virus: Structural and Functional Insights.

Emerg Microbes Infect

September 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.

Enveloped viruses rely on matrix proteins for structural integrity and lifecycle progression. Matrix protein 1 (M1) is the most abundant structural protein of influenza A virus (IAV), playing a multifaceted role in viral uncoating, polymerase activity, vRNA transcription and replication, and assembly and budding. The M1 protein not only interacts with host cells but also regulates viral morphogenesis, thereby influencing viral transmissibility and pathogenicity.

View Article and Find Full Text PDF

Influenza virus neuraminidase (NA) is a crucial target for protective antibodies, yet the development of recombinant NA protein as a vaccine has been held back by instability and variable expression. We have taken a pragmatic approach to improving expression and stability of NA by grafting antigenic surface loops from low-expressing NA proteins onto the scaffold of high-expressing counterparts. The resulting hybrid proteins retained the antigenic properties of the loop donor while benefiting from the high-yield expression, stability, and tetrameric structure of the loop recipient.

View Article and Find Full Text PDF

Background: Patients with epilepsy often require long-term antiepileptic medications, which can affect hematological parameters. Influenza (H1N1) infection is known to potentially cause thrombocytopenia. This case examines the clinical implications of a 29-year-old female patient with epilepsy who developed influenza and significant platelet reduction.

View Article and Find Full Text PDF

Objectives: This study compared the diagnostic accuracy of seven different commercial serological assays for COVID-19, using RT-PCR as the gold standard, through meta-analysis and indirect comparison.

Methods: Fifty-seven studies, published from November 2019 to June 2024, were included. The diagnostic performance of IgA, IgG, and total antibody assays for SARS-CoV-2 was assessed.

View Article and Find Full Text PDF