Viruses are dependent on cellular energy metabolism for their replication, and the drug nitazoxanide (Alinia) was shown to interfere with both processes. Nitazoxanide is an uncoupler of mitochondrial oxidative phosphorylation (OXPHOS). Our hypothesis was that mitochondrial uncoupling underlies the antiviral effects of nitazoxanide.
View Article and Find Full Text PDFis recognized as one of the most rapidly evolving virus family as a consequence of the high genomic nucleotide substitution rates and recombination. The family comprises a large number of enveloped, positive-sense single-stranded RNA viruses, causing an array of diseases of varying severity in animals and humans. To date, seven human coronaviruses (HCoV) have been identified, namely HCoV-229E, HCoV-NL63, HCoV-OC43 and HCoV-HKU1, which are globally circulating in the human population (seasonal HCoV, sHCoV), and the highly pathogenic SARS-CoV, MERS-CoV and SARS-CoV-2.
View Article and Find Full Text PDFACS Bio Med Chem Au
August 2023
Amino acid ester prodrugs of the thiazolides, introduced to improve the pharmacokinetic parameters of the parent drugs, proved to be stable as their salts but were unstable at pH > 5. Although some of the instability was due to simple hydrolysis, we have found that the main end products of the degradation were peptides formed by rearrangement. These peptides were stable solids: they maintained significant antiviral activity, and in general, they showed improved pharmacokinetics (better solubility and reduced clearance) compared to the parent thiazolides.
View Article and Find Full Text PDFSARS-CoV-2, the causative agent of COVID-19, has caused an unprecedented global health crisis. The SARS-CoV-2 spike, a surface-anchored trimeric class-I fusion glycoprotein essential for viral entry, represents a key target for developing vaccines and therapeutics capable of blocking virus invasion. The emergence of SARS-CoV-2 spike variants that facilitate virus spread and may affect vaccine efficacy highlights the need to identify novel antiviral strategies for COVID-19 therapy.
View Article and Find Full Text PDFBackground: There is an urgent need for treatments of mild or moderate COVID-19 in an outpatient setting.
Methods: A randomized double-blind placebo-controlled clinical trial in 36 centers in the U.S.
A well-tolerated and cost-effective oral drug that blocks SARS-CoV-2 growth and dissemination would be a major advance in the global effort to reduce COVID-19 morbidity and mortality. Here, we show that the oral FDA-approved drug nitazoxanide (NTZ) significantly inhibits SARS-CoV-2 viral replication and infection in different primate and human cell models including stem cell-derived human alveolar epithelial type 2 cells. Furthermore, NTZ synergizes with remdesivir, and it broadly inhibits growth of SARS-CoV-2 variants B.
View Article and Find Full Text PDFThe thiazolides, typified by nitazoxanide, are an important class of anti-infective agents. A significant problem with nitazoxanide and its active circulating metabolite tizoxanide is their poor solubility. We report the preparation and evaluation of a series of amine salts of tizoxanide and the corresponding 5-Cl thiazolide.
View Article and Find Full Text PDFWe previously investigated the role of Nitazoxanide (NTZ), a thiazolide endowed with antiviral and antiparasitic activity, in HIV-1 infection. NTZ treatment in primary isolated PBMCs was able to reduce HIV-1 infection in vitro by inducing the expression of a number of type-I interferon-stimulated genes. Among them, NTZ was able to induce cholesterol-25-hydroxylase (CH25H), which is involved in cholesterol metabolism.
View Article and Find Full Text PDFCryptosporidiosis is a gastrointestinal illness with profuse diarrhoea. Although there are no other Food and Drug Administration (FDA)-approved alternatives for the treatment of cryptosporidiosis, nitazoxanide (NTZ) can be qualified as partially effective. In immunosuppressed conditions, severe and/or disseminated cryptosporidiosis may occur and patients should be treated parenterally.
View Article and Find Full Text PDFInfluenza Other Respir Viruses
November 2020
Background: Influenza viruses cause significant morbidity and mortality, especially in young children, elderly, pregnant women and individuals with co-morbidities. Patients with severe influenza disease are typically treated with one neuraminidase inhibitor, oseltamivir or zanamivir. These antivirals need to be taken early to be most effective and often lead to the emergence of drug resistance and/or decreased drug susceptibility.
View Article and Find Full Text PDFA major limitation of the currently available influenza antivirals is the potential development of drug resistance. The adamantanes, neuraminidase inhibitors, and more recently polymerase inhibitors, have all been associated with the emergence of viral resistance in preclinical, clinical studies or in clinical use. As a result, host-targeted drugs that act on cellular proteins or functions have become an attractive option for influenza treatment as they are less likely to select for resistance.
View Article and Find Full Text PDFCombination therapy is an alternative approach to reduce viral shedding and improve clinical outcomes following influenza virus infections. In this study we used oseltamivir (OST), a neuraminidase inhibitor and nitazoxanide (NTZ), a host directed drug, and found in vitro that the combination of these two antivirals have a synergistic relationship. Using the ferret model of (A/Perth/265/2009, (H1N1)pdm09), virus infections, we found that the combination of NTZ and OST was more effective than either NTZ or OST independently in preventing infection and reducing duration of viral shedding.
View Article and Find Full Text PDFChronic infection by the hepatitis B virus (HBV) has remained a major public health problem. To achieve an HBV cure, we will likely need to combine antivirals with different viral targets as well as immunotherapy. Here, we report data from a pilot proof-of-concept clinical trial of nitazoxanide in treating chronic hepatitis B.
View Article and Find Full Text PDFParamyxoviridae, a large family of enveloped viruses harboring a nonsegmented negative-sense RNA genome, include important human pathogens as measles, mumps, respiratory syncytial virus (RSV), parainfluenza viruses, and henipaviruses, which cause some of the deadliest emerging zoonoses. There is no effective antiviral chemotherapy for most of these pathogens. Paramyxoviruses evolved a sophisticated membrane-fusion machine consisting of receptor-binding proteins and the fusion F-protein, critical for virus infectivity.
View Article and Find Full Text PDFThe emergence of new avian influenza virus (AIV) strains able to infect humans represents a serious threat to global human health. In addition to surveillance and vaccine development, antiviral therapy remains crucial for AIV control; however, the increase in drug-resistant AIV strains underscores the need for novel approaches to anti-influenza chemotherapy. We have previously shown that the thiazolide anti-infective nitazoxanide (NTZ) inhibits influenza A/PuertoRico/8/1934(H1N1) virus replication, and this effect was associated with inhibition of viral hemagglutinin (HA) maturation.
View Article and Find Full Text PDFAim: The only small molecule drugs currently available for treatment of influenza A virus (IAV) are M2 ion channel blockers and sialidase inhibitors. The prototype thiazolide, nitazoxanide, has successfully completed Phase III clinical trials against acute uncomplicated influenza.
Results: We report the activity of seventeen thiazolide analogs against A/PuertoRico/8/1934(H1N1), a laboratory-adapted strain of the H1N1 subtype of IAV, in a cell culture-based assay.
Soon thereafter infection is established, hosts strive for an efficient eradication of microorganisms, with as limited tissue damage as possible, and durable immunological protection against re-infection. On the other hand, pathogens have developed countermeasures to escape host surveillance and to warrant diffusion to other hosts. In this molecular arms race the final results relies on multiple variables, including the genetic and immunologic e correlates of protection available for the host.
View Article and Find Full Text PDFNitazoxanide is a thiazolide compound that was originally developed as an anti-parasitic agent, but has recently been repurposed for the treatment of influenza virus infections. Thought to exert its anti-influenza activity via the inhibition of hemagglutinin maturation and intracellular trafficking in infected cells, the effectiveness of nitazoxanide in treating patients with non-complicated influenza is currently being assessed in phase III clinical trials. Here, we describe the susceptibility of 210 seasonal influenza viruses to tizoxanide, the active circulating metabolite of nitazoxanide.
View Article and Find Full Text PDFEur J Med Chem
January 2017
Thiazolides are polypharmacology agents with at least three mechanisms of action against a broad spectrum of parasites, bacteria and viruses. In respiratory viruses they inhibit the replication of orthomyxoviridae and paramyxoviridae at a post-translational level. Nitazoxanide 1a, the prototype thiazolide, was originally developed as an antiparasitic agent and later repurposed for the treatment of viral respiratory infections.
View Article and Find Full Text PDFNitazoxanide (Alinia(®), NTZ) and tizoxanide (TIZ), its active circulating metabolite, belong to a class of agents known as thiazolides (TZD) endowed with broad anti-infective activities. TIZ and RM-4848, the active metabolite of RM-5038, were shown to stimulate innate immunity in vitro. Because natural resistance to HIV-1 infection in HIV-exposed seronegative (HESN) individuals is suggested to be associated with strong innate immune responses, we verified whether TIZ and RM-4848 could reduce the in vitro infectiousness of HIV-1.
View Article and Find Full Text PDFJ Infect Public Health
January 2017
Nitazoxanide is a broad-spectrum antiviral agent undergoing clinical development for treatment of influenza and other viral respiratory infections. Nitazoxanide exhibits in vitro activity against Middle East respiratory syndrome coronavirus (MERS-CoV) and other coronaviruses, inhibiting expression of the viral N protein. Nitazoxanide also suppresses production of pro-inflammatory cytokines in peripheral blood mononuclear cells and suppresses interleukin 6 production in mice.
View Article and Find Full Text PDFAntimicrob Agents Chemother
February 2015
The emergence of drug-resistant influenza A virus (IAV) strains represents a serious threat to global human health and underscores the need for novel approaches to anti-influenza chemotherapy. Combination therapy with drugs affecting different IAV targets represents an attractive option for influenza treatment. We have previously shown that the thiazolide anti-infective nitazoxanide (NTZ) inhibits H1N1 IAV replication by selectively blocking viral hemagglutinin maturation.
View Article and Find Full Text PDFOriginally developed and commercialized as an antiprotozoal agent, nitazoxanide was later identified as a first-in-class broad-spectrum antiviral drug and has been repurposed for the treatment of influenza. A Phase 2b/3 clinical trial recently published in The Lancet Infectious Diseases found that oral administration of nitazoxanide 600mg twice daily for five days reduced the duration of clinical symptoms and reduced viral shedding compared to placebo in persons with laboratory-confirmed influenza. The same study also suggested a potential benefit for subjects with influenza-like illness who did not have influenza or other documented respiratory viral infection.
View Article and Find Full Text PDF