Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Primary cilia are immotile appendages that have evolved to receive and interpret a variety of different extracellular cues. Cilia play crucial roles in intercellular communication during development and defects in cilia affect multiple tissues accounting for a heterogeneous group of human diseases called ciliopathies. The Hedgehog (Hh) signaling pathway is one of these cues and displays a unique and symbiotic relationship with cilia. Not only does Hh signaling require cilia for its function but the majority of the Hh signaling machinery is physically located within the cilium-centrosome complex. More specifically, cilia are required for both repressing and activating Hh signaling by modifying bifunctional Gli transcription factors into repressors or activators. Defects in balancing, interpreting or establishing these repressor/activator gradients in Hh signaling either require cilia or phenocopy disruption of cilia. Here, we will summarize the current knowledge on how spatiotemporal control of the molecular machinery of the cilium allows for a tight control of basal repression and activation states of the Hh pathway. We will then discuss several paradigms on how cilia influence Hh pathway activity in tissue morphogenesis during development. Last, we will touch on how cilia and Hh signaling are being reactivated and repurposed during adult tissue regeneration. More specifically, we will focus on mesenchymal stem cells within the connective tissue and discuss the similarities and differences of how cilia and ciliary Hh signaling control the formation of fibrotic scar and adipose tissue during fatty fibrosis of several tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736055PMC
http://dx.doi.org/10.1016/j.semcdb.2020.05.029DOI Listing

Publication Analysis

Top Keywords

cilia
12
paradigms cilia
8
signaling
8
hedgehog signaling
8
cilia signaling
8
signaling require
8
require cilia
8
developmental regenerative
4
regenerative paradigms
4
cilia regulated
4

Similar Publications

An early diagnosis of Parkinson's disease (PD) represents a challenge and novel accurate biomarkers are therefore urgently needed. Detection of phosphorylated α-synuclein (p-α-syn) in skin nerve fibers has shown promise as such a marker. However, its accuracy for the identification of PD among patients with early signs of parkinsonism has not been thoroughly explored.

View Article and Find Full Text PDF

Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.

View Article and Find Full Text PDF

ARL13B is a regulatory GTPase enriched in cilia, making it a popular marker for this organelle. Arl13bhnn/hnn mice lack ARL13B expression, die during midgestation, and exhibit defects in ciliogenesis. The R26Arl13b-Fucci2aR biosensor mouse line directs the expression of fluorescently tagged full-length Arl13b cDNA upon Cre recombination.

View Article and Find Full Text PDF

Mammalian motile cilia: Structure, formation, organization, and function.

Semin Cell Dev Biol

September 2025

Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. Electronic address:

Cilia are membrane-covered hair-like organelles built on specialized centrioles and conserved throughout eukaryotic evolution. They are either motile or immotile, serving respectively as versatile signaling antennae or elegant beating nanomachines. Accordingly, their dysfunctions cause a wide variety of developmental and degenerative disorders, which in human are syndromes termed ciliopathies.

View Article and Find Full Text PDF

Truncating Mutations in BBS10 and BBS12 Impair Proteostasis and Ciliary Architecture in Bardet-Biedl Syndrome.

Exp Eye Res

September 2025

Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Eye institu

Bardet-Biedl Syndrome (BBS) is a rare autosomal recessive ciliopathy characterized by genetic heterogeneity. Despite significant progress in understanding the BBSome-coding genes associated with ciliopathies, the pathogenesis linked to mutations in chaperonin-coding genes (BBS6, BBS10, and BBS12) remains poorly defined. This study aims to confirm the genetic diagnosis of BBS and elucidate the pathological mechanisms in causative genes of BBS10 and BBS12.

View Article and Find Full Text PDF