98%
921
2 minutes
20
Bacterial outer membrane vesicles (OMVs) typically contain multiple immunogenic molecules that include antigenic proteins, making them good candidates for vaccine development. In animal models, vaccination with OMVs has been shown to confer protective immune responses against many bacterial diseases. It is possible to genetically introduce heterologous protein antigens to the bacterial host that can then be produced and relocated to reside within the OMVs by means of the host secretion mechanisms. Accordingly, in this study we sought to develop a novel platform for recombinant OMV (rOMV) production in the widely used bacterial expression host species, . Three different lipoprotein signal peptides including their Lol signals and tether sequences-from fHbp, LipL32, and JlpA-were combined upstream to the GFPmut2 model protein, resulting in three recombinant plasmids. Pilot expression studies showed that the fusion between fHbp and GFPmut2 was the only promising construct; therefore, we used this construct for large-scale expression. After inducing recombinant protein expression, the nanovesicles were harvested from cell-free culture media by ultrafiltration and ultracentrifugation. Transmission electron microscopy demonstrated that the obtained rOMVs were closed, circular single-membrane particles, 20-200 nm in size. Western blotting confirmed the presence of GFPmut2 in the isolated vesicles. Collectively, although this is a non-optimized, proof-of-concept study, it demonstrates the feasibility of this platform in directing target proteins into the vesicles for OMV-based vaccine development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628879 | PMC |
http://dx.doi.org/10.4014/jmb.2003.03023 | DOI Listing |
Biotechnol Lett
September 2025
Department of Chemical Engineering, Hongik University, Sangsu-dong, Mapo-gu, Seoul, 04066, Republic of Korea.
The cell surface display system employs carrier proteins to present target proteins on the outer membrane of cells. This system enables functional proteins to be exposed on the exterior of living cells without cell lysis, allowing direct interaction with the surrounding environment. A major limitation of conventional approaches is the difficulty in displaying large-sized enzymes or antibodies, despite their critical roles in applications requiring functional domains that must remain intact, such as catalytic or antigen-binding sites.
View Article and Find Full Text PDFAm J Trop Med Hyg
September 2025
Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia.
Haemaphysalis leporispalustris (the rabbit tick) is one of the most broadly distributed hard tick species in the Americas. In 2018, investigators amplified DNA from a spotted fever group Rickettsia (SFGR) species found in host-seeking larvae and nymphs of H. leporispalustris collected in northern California and proposed the name Candidatus "Rickettsia lanei" using results obtained via multilocus sequence typing.
View Article and Find Full Text PDFPLoS Pathog
September 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
The parasitic protozoan Trypanosoma brucei has a single mitochondrial nucleoid, anchored to the basal body of the flagellum via the tripartite attachment complex (TAC). The detergent-insoluble TAC is essential for mitochondrial genome segregation during cytokinesis. The TAC assembles de novo in a directed way from the probasal body towards the kDNA.
View Article and Find Full Text PDFElife
September 2025
Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, United States.
Wnt proteins are critical signaling molecules in developmental processes across animals. Despite intense study, their evolutionary roots have remained enigmatic. Using sensitive sequence analysis and structure modeling, we establish that the Wnts are part of a vast assemblage of domains, the Lipocone superfamily, defined here for the first time.
View Article and Find Full Text PDFAutophagy
September 2025
Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
Immune checkpoint inhibitors (ICIs) can re-active the immune response and induce a complete response in mismatch repair-deficient and microsatellite instability-high (dMMR/MSI-H) colorectal cancer (CRC). However, most CRCs exhibit proficient mismatch repair and microsatellite stable (pMMR/MSS) phenotypes with limited immunotherapy response because of sparse intratumoral CD8 T-lymphocyte infiltration. Cellular senescence has been reported to involve immune cell infiltration through a senescence-associated secretory phenotype (SASP).
View Article and Find Full Text PDF