Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives/hypothesis: The ideal trachea replacement would be a living graft that is genetically identical to the host, avoiding the need for immunosuppression. We have developed a mouse model of syngeneic tracheal transplant that results in long-term survival without graft stenosis or delayed healing. To understand how host cells contribute to tracheal transplant integration, we quantified the populations of host cells in the graft and native trachea following implant.

Study Design: Tracheal transplant, tracheal replacement, regenerative medicine, animal model.

Methods: Tracheal grafts were obtained from female C57BL/6 mice and orthotopically transplanted into syngeneic male recipients. Cohorts were euthanized on day 14, day 45, and day 90 post-transplantation. Host and graft tracheas were explanted and analyzed by histology. Male host cells were quantified using fluorescence in situ hybridization, and macrophages were quantified with immunofluorescence.

Results: Evidence of host-derived cells was found in the midgraft at the earliest time point (14 days). Host-derived cells transiently increased in the graft on day 45 and were predominantly found in the submucosa. By day 90, the population of host-derived cells population declined to a similar level on day 14. Macrophage infiltration of host and graft tissue was observed at all time points and was greatest on day 90.

Conclusions: Tracheal graft integration occurs by way of subacute transient host-cell infiltration and is primarily inflammatory in nature. Host-cell contribution to the graft epithelium is limited. These data indicate that creation of living, nonimmunogenic tracheal graft could serve as a viable solution for long-segment tracheal defects.

Level Of Evidence: 3 Laryngoscope, 131:E340-E345, 2021.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140606PMC
http://dx.doi.org/10.1002/lary.28781DOI Listing

Publication Analysis

Top Keywords

host cells
16
tracheal graft
12
tracheal transplant
12
host-derived cells
12
graft
10
tracheal
9
day day
8
host graft
8
host
7
cells
7

Similar Publications

Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hr after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity.

View Article and Find Full Text PDF

Replication-competent adenovirus reporters utilizing endogenous viral expression architecture.

J Virol

September 2025

Genome Regulation and Cell Signaling, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, Pennsylvania, USA.

Unlabelled: Adenoviruses are double-stranded DNA viruses widely used as platforms for vaccines, oncolytics, and gene delivery. However, tools for studying adenoviral gene expression in real time during infection remain limited. Here, we describe a set of fluorescent and bioluminescent reporter viruses built using the modular AdenoBuilder reverse genetics system and informed by high-resolution maps of Ad5 transcription.

View Article and Find Full Text PDF

Unlabelled: There is a need for the development of broad-spectrum antiviral compounds that can act as first-line therapeutic countermeasures to emerging viral infections. Host-directed approaches present a promising avenue of development and carry the benefit of mitigating risks of viral escape mutants. We have previously found the SKI (super killer) complex to be a broad-spectrum, host-target with our lead compound ("UMB18") showing activity against influenza A virus, coronaviruses, and filoviruses.

View Article and Find Full Text PDF

Unrelated pathogens, including viruses and bacteria, use a common short linear motif (SLiM) to interact with cellular kinases of the RSK (p90 S6 ribosomal kinase) family. Such a "DDVF" (D/E-D/E-V-F) SLiM occurs in the leader (L) protein encoded by picornaviruses of the genus , including Theiler's murine encephalomyelitis virus (TMEV), Boone cardiovirus (BCV), and Encephalomyocarditis virus (EMCV). The L-RSK complex is targeted to the nuclear pore, where RSK triggers FG-nucleoporins hyperphosphorylation, thereby causing nucleocytoplasmic trafficking disruption.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) causes a high level of blood glutamate, which triggers host defense by activating oxidative stress and inflammation response. However, the concrete mechanism underlying its exacerbating effects on acute lung injury (ALI) severity remains unknown. In the present study, we aim to demonstrate the special role of N-methyl-D-aspartate receptor (NMDAR) in regulating glutamate-related inflammation signaling to facilitate the sustaining injury.

View Article and Find Full Text PDF