Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The synthesis, characterization and cytotoxic activity against different cancer cell lines of various mesoporous silica-based materials containing folate targeting moieties and a cytotoxic fragment based on a triphenyltin(IV) derivative have been studied. Two different mesoporous nanostructured silica systems have been used: firstly, micronic silica particles of the MSU-2 type and, secondly, mesoporous silica nanoparticles (MSNs) of about 80 nm. Both series of materials have been characterized by different methods, such as powder X-ray diffraction, X-ray fluorescence, absorption spectroscopy and microscopy. In addition, these systems have been tested against four different cancer cell lines, namely, OVCAR-3, DLD-1, A2780 and A431, in order to observe if the size of the silica-based systems and the quantity of incorporated folic acid influence their cytotoxic action. The results show that the materials are more active when the quantity of folic acid is higher, especially in those cells that overexpress folate receptors such as OVCAR-3 and DLD-1. In addition, the study of the potential modulation of the soluble folate receptor alpha (FOLR1) by treatment with the synthesized materials has been carried out using OVCAR-3, DLD-1, A2780 and A431 tumour cell lines. The results show that a relatively high concentration of folic acid functionalization of the nanostructured silica together with the incorporation of the cytotoxic tin fragment leads to an increase in the quantity of the soluble FOLR1 secreted by the tumour cells. In addition, the studies reported here show that this increase of the soluble FOLR1 occurs presumably by cutting the glycosyl-phosphatidylinositol anchor of membrane FR-α and by the release of intracellular FR-α. This study validates the potential use of a combination of mesoporous silica materials co-functionalized with folate targeting molecules and an organotin(IV) drug as a strategy for the therapeutic treatment of several cancer cells overexpressing folate receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355810PMC
http://dx.doi.org/10.3390/pharmaceutics12060512DOI Listing

Publication Analysis

Top Keywords

folic acid
16
cell lines
16
cancer cell
12
ovcar-3 dld-1
12
folate targeting
8
nanostructured silica
8
mesoporous silica
8
dld-1 a2780
8
a2780 a431
8
folate receptors
8

Similar Publications

Increase in breast cancer has led to the search for systems that can enable, targeted, sustained and prolonged release of drugs while simultaneously reducing the side effects posed by them. In light of this, folic acid-conjugated 5-Fluorouracil and doxorubicin loaded chitosan/Fe₃O₄ (FA-dual@CS/Fe₃O₄) nanocomposite has been synthesized using the chemical method for targeted breast cancer therapy in addition to CS/FeO and dual drug encapsulated CS/FeO. FTIR and XPS studies confirm the successful drug encapsulation and FA conjugation.

View Article and Find Full Text PDF

A novel treatment for diabetic nephropathy: Folate receptor-targeted delivery of TLR4 siRNA via functionalized PLGA nanoparticles in streptozotocin-induced diabetic murine models.

Nanomedicine

September 2025

The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, People's Republic of China; Key laboratory of nephropathy, The S

Diabetic kidney disease (DKD), a prominent microvascular complication of diabetes mellitus and the leading cause of end-stage renal disease (ESRD), was addressed through a novel nanotherapeutic approach. This study engineered folic acid-conjugated poly(lactic-co-glycolic acid) nanoparticles (FA-PLGA NPs) for the folate receptor (FR)-targeted delivery of Toll-like receptor 4 small interfering RNA (TLR4 siRNA) to treat diabetic nephropathy (DN). In a streptozotocin-induced DN murine model, administration of FA-PLGA NPs/TLR4 siRNA significantly mitigated renal injury compared to untreated DN controls.

View Article and Find Full Text PDF

Background: The UK has a high and increasing prevalence of folate deficiency. The decision to start mandatory folic acid fortification has not yet been implemented. Concern has been raised about the effect of high folate on vitamin B12 status.

View Article and Find Full Text PDF

Maternal undernutrition in Africa remains a public health challenge, contributing to negative pregnancy outcomes, neonatal mortality, and perpetuating intergenerational cycles of poor health. Antenatal multiple micronutrient supplementation (MMS), a cost-effective intervention recognized for its potential to improve maternal and neonatal health, reduces risks of low birth weight, preterm birth, small for gestational age, and stillbirth while offering a $37 return for every $1 invested. Despite its benefits, MMS adoption across African countries remains suboptimal.

View Article and Find Full Text PDF

Among cancers, liver cancer is the fourth leading cause of mortality worldwide and drawbacks of conventional approaches could not inhibit this cancer. Thus, an efficient folic acid (FA)-functionalized chitosan (CS)-poly lactic-co-glycolic acid (PLGA) nanocarrier was fabricated for delivery of sodium butyrate (NB) therapeutics to HepG2 liver cancer cells. The fabricated CS-NB-PLGA-FA nanocarrier was characterized by FT-IR, DLS, TEM, and TGA.

View Article and Find Full Text PDF