Polymeric nanostructure vaccines: applications and challenges.

Expert Opin Drug Deliv

Immunology Group, Centro de Investigaciones Biomédicas, CINBIO, Universidade de Vigo, Campus Universitario Lagoas Marcosende, Vigo, Spain.

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: The use of biocompatible polymers, from natural or synthetic sources, opened the door for a new era in vaccine research. These polymers offer the possibility to develop nanostructured antigen carriers that can be easily internalized by antigen-presenting cells, due to their nanometric size. Besides, the incorporation of an adjuvant allows increasing and modulating the immune response for both, polymers with or without self-adjuvant properties.

Areas Covered: The historical background and the state-of-the-art in the use of polymers as antigen carriers are addressed in the first part of this review. Then, an overview of the immunology of vaccination is provided. Finally, the main advances in the field, based on the prototypes that are licensed or undergoing clinical trials, but also the challenges that limit the translation of many polymer-based nanostructure vaccines with promising preclinical results, are discussed.

Expert Opinion: Polymeric nanostructured vaccines have a great potential in modern vaccinology. However, the translation into the market is hampered due to several limitations. Studies on correlates of protection to provide suitable biomarkers, new and better methods of synthesis to produce more reproducible nanovaccines, a deeper knowledge in the immune system and in the physiopathology of the infectious diseases will surely improve and boost the field in the next years.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17425247.2020.1776259DOI Listing

Publication Analysis

Top Keywords

nanostructure vaccines
8
antigen carriers
8
polymeric nanostructure
4
vaccines applications
4
applications challenges
4
challenges introduction
4
introduction biocompatible
4
polymers
4
biocompatible polymers
4
polymers natural
4

Similar Publications

The emergence of messenger ribonucleic acid (mRNA) vaccines as an alternative platform to traditional vaccines has been accompanied by advances in nanobiotechnology, which have improved the stability and delivery of these vaccines through novel nanoparticles (NPs). Specifically, the development of NPs for mRNA delivery has facilitated the loading, protection and release of mRNA in the biological microenvironment, leading to the stimulation of mRNA translation for effective intervention strategies. Intriguingly, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), have been permitted for emergency usage authorization to prevent COVID-19 infection by USFDA.

View Article and Find Full Text PDF

Upscaling, toxicity and efficacy of multifaceted dressing embedded with dsirna-loaded gold nanoparticles for enhancing diabetic wound treatment.

PLoS One

September 2025

Faculty of Pharmacy, Centre for Drug Delivery Technology and Vaccine (CENTRIC), Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia.

Poor vascularization and infections hinder diabetic wound healing, posing challenges in therapy development. A multi-action approach incorporating Dicer-substrate small interfering RNA (DsiRNA) against the prostaglandin transporter (PGT) gene and gold nanoparticles (AuNPs) into a Pluronic F-127 (PF127) gel was developed. This study aimed to upscale AuNP biosynthesis using Lignosus rhinocerotis (tiger milk mushroom, TMM) extract and chitosan as stabilizers.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs) are extracellular nanostructures released from Gram-negative bacteria. Acinetobacter baumannii OMVs (AbOMVs) have been extensively studied and can thus be used as a model for understanding multiple aspects of OMV biology. In this systematic review, we comprehensively assess the relevant literature covering AbOMVs and present these studies in the context of OMV biology in general.

View Article and Find Full Text PDF

Spleen-targeted NeoPol-mL242 mRNA vaccine induces robust T-cell responses in a hepatocellular carcinoma model.

J Nanobiotechnology

September 2025

Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.

Personalized neoantigen peptide vaccines have shown remarkable anti-tumor activity across diverse cancer types. With the rapid advancement of messenger RNA (mRNA) delivery technologies during the coronavirus disease of 2019 (COVID-19) pandemic, mRNA-based cancer vaccines have emerged as a promising therapeutic approach because of their scalable production, safety, and capacity to elicit potent immune responses. However, the predominant distribution of mRNA delivery systems in the liver may lead to hepatic damage and restrict therapeutic accessibility.

View Article and Find Full Text PDF

Grass carp reovirus type II (GCRV-II) has inflicted substantial economic damage to aquaculture industry due to highly contagious. To combat epidemic GCRV-II, we rational designed and constructed a multi-epitope nanoparticle vaccine (Pep-Fn) that consisted with cell penetrating peptide (CPP), epitope peptides, cell and grass carp-derived ferritin. Firstly, an anti-GCRV-II phage antibody library was constructed to screen antibodies for outer capsid proteins VP4 and VP35.

View Article and Find Full Text PDF