Density-functional theory models of Fe(iv)O reactivity in metal-organic frameworks: self-interaction error, spin delocalisation and the role of hybrid exchange.

Phys Chem Chem Phys

Institut de Ciència de Materials de Barcelona (ICMAB), Spanish National Research Council (CSIC), Campus de la UAB, Bellaterra, 08193, Spain.

Published: June 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We study the reactivity of Fe(iv)O moieties supported by a metal-organic framework (MOF-74) in the oxidation reaction of methane to methanol using all-electron, periodic density-functional theory calculations. We compare results concerning the electronic properties and reactivity obtained using two hybrid (B3LYP and sc-BLYP) and two standard generalised gradient corrected (PBE and BLYP) semi-local density functional approximations. The semi-local functionals are unable to reproduce the expected reaction profiles and yield a qualitatively incorrect representation of the reactivity. Non-local hybrid functionals provide a substantially more reliable description and predict relatively modest (ca. 60 kJ mol) reaction energy barriers for the H-atom abstraction reaction from CH molecules. We examine the origin of these differences and we highlight potential means to overcome the limitations of standard semi-local functionals in reactivity calculations in solid-state systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp01285hDOI Listing

Publication Analysis

Top Keywords

density-functional theory
8
semi-local functionals
8
reactivity
5
theory models
4
models feivo
4
feivo reactivity
4
reactivity metal-organic
4
metal-organic frameworks
4
frameworks self-interaction
4
self-interaction error
4

Similar Publications

Rapid Removal of Azo Cationic Dyes Using a Cu(II) Hydrogen-Π-Bonded Organic Framework and Its Derived Oxide: A Combined Adsorption and Photocatalysis Study.

Langmuir

September 2025

Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria.

Azo dyes, prevalent in various industries, including textile dyeing, food, and cosmetics, pose significant environmental and health risks due to their chemical stability and toxicity. This study introduces the synthesis and application of a copper hydrogen-π-bonded benzoate framework (Cu-HBF) and its derived marigold flower-like copper oxide (MFL-CuO) in a synergetic adsorption-photocatalytic process for efficiently removing cationic azo dyes from water, specifically crystal violet (CV), methylene blue (MB), and rhodamine B (RhB). The Cu-HBF, previously available only in single crystal form, is prepared here as a crystalline powder for the first time, using a low-cost and facile procedure, allowing its application as an adsorbent and also serving as a precursor for synthesizing well-structured copper oxide (MFL-CuO).

View Article and Find Full Text PDF

The multiplicity of orbitals in quantum systems significantly influences the competition between Kondo screening and local spin magnetization. The identification of orbital-specific processes is essential for advancing spintronic devices, as well as for enhancing the understanding of many-body quantum phenomena, but it remains a great challenge. Here, we use a combination of scanning tunneling microscopy/spectroscopy and electron spin resonance (ESR) spectroscopy to investigate single iron phthalocyanine (FePc) molecules on MgO/Ag(100).

View Article and Find Full Text PDF

While hexagonal boron nitride (hBN) hosts promising room-temperature quantum emitters for hybrid quantum photonic circuits, scalable deterministic integration and insufficient brightness alongside low photon collection and coupling efficiencies remain unresolved challenges. We present a femtosecond laser nanoengineering platform that enables the site-specific generation of hBN single-photon source (SPS) arrays. First-principles density functional theory (DFT) calculations and polarization-resolved spectroscopy confirm the atomic origin of emission as interfacial defects at hBN/SiO heterojunctions.

View Article and Find Full Text PDF

Polar protic and aprotic solvents can effectively simulate the maturation of breast carcinoma cells. Herein, the influence of polar protic solvents (water and ethanol) and aprotic solvents (acetone and DMSO) on the properties of 3-(dimethylaminomethyl)-5-nitroindole (DAMNI) was investigated using density functional theory (DFT) computations. Thermodynamic parameters retrieved from the vibrational analysis indicated that the DAMNI's entropy, heat capacity, and enthalpy increased with rising temperature.

View Article and Find Full Text PDF

Atom-precise coinage metal nanoclusters for near-infrared emission: excited-state dynamics and mechanisms.

Chem Soc Rev

September 2025

State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

Understanding the excited-state dynamics of atomically precise coinage metal nanoclusters (CMNCs) is pivotal for elucidating their photoluminescence (PL) mechanisms and rationally tuning emission properties-particularly in the near-infrared (NIR) region, where CMNC-based nanomaterials have tremendous potential for biomedical and optoelectronic applications. This review presents a systematic and comprehensive account of recent advances in investigating the excited-state dynamics and PL mechanisms of NIR-emitting CMNCs with atomic precision, leveraging the synergistic integration of time-resolved spectroscopy and time-dependent density functional theory (TD-DFT) calculations. Distinct from previous reviews that offer a broad survey of CMNC properties, the present review focuses specifically on intrinsic factors, highlighting molecular vibrational features and electronic structure modulation as key determinants of NIR emission.

View Article and Find Full Text PDF