Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

KEY MESSAGE: The timing and transcriptomic changes during the C to CAM transition of common ice plant support the notion that guard cells themselves can shift from C to CAM. Crassulacean acid metabolism (CAM) is a specialized type of photosynthesis: stomata close during the day, enhancing water conservation, and open at night, allowing CO uptake. Mesembryanthemum crystallinum (common ice plant) is a facultative CAM species that can shift from C photosynthesis to CAM under salt or drought stresses. However, the molecular mechanisms underlying the stress induced transition from C to CAM remain unknown. Here we determined the transition time from C to CAM in M. crystallinum under salt stress. In parallel, single-cell-type transcriptomic profiling by 3'-mRNA sequencing was conducted in isolated stomatal guard cells to determine the molecular changes in this key cell type during the transition. In total, 495 transcripts showed differential expression between control and salt-treated samples during the transition, including 285 known guard cell genes, seven CAM-related genes, 18 transcription factors, and 185 other genes previously not found to be expressed in guard cells. PEPC1 and PPCK1, which encode key enzymes of CAM photosynthesis, were up-regulated in guard cells after seven days of salt treatment, indicating that guard cells themselves can shift from C to CAM. This study provides important information towards introducing CAM stomatal behavior into C crops to enhance water use efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-020-01016-9DOI Listing

Publication Analysis

Top Keywords

guard cells
24
cam
11
molecular changes
8
mesembryanthemum crystallinum
8
cam transition
8
common ice
8
ice plant
8
cells shift
8
shift cam
8
guard
7

Similar Publications

Cancer remains the second leading cause of death worldwide, highlighting the urgent need for novel therapeutic approaches. Fungi are a rich source of bioactive metabolites, some of which exhibit potent anticancer properties. This scoping review evaluates the current research on fungal metabolites with anticancer potential, focusing on species native to Saudi Arabia's unique ecosystem.

View Article and Find Full Text PDF

Excessive P effects in the growth of Solanum lycopersicum related to stomatal closing mediated by ABA and ethylene.

Plant Sci

September 2025

Instituto de Ciências Naturais (ICN), Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Centro, zip code 37130-001, Alfenas, MG, Brazil. Electronic address:

Phosphorus (P) is an essential macronutrient for plant growth and development; however, both its deficiency and excess can be harmful. Although the effects of excess P are still poorly understood, research has shown that plants exposed to excessive levels of P exhibit reductions in stomatal conductance, photosynthesis, and growth. The aim of this study was to investigate the effect of different P concentrations on stomatal responses, photochemical parameters, growth, and development of three Solanum lycopersicum genotypes: wild type, Never ripe (lower sensitivity to ethylene), and Notabilis (deficient in ABA production).

View Article and Find Full Text PDF

Differential regulation of calcium-activated plant kinases in Arabidopsis thaliana.

Plant J

September 2025

Biological Information Processing Group, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.

The decoding of calcium signals by plant calcium-dependent kinases (CPKs) is not fully understood yet. Based on kinetic in vitro measurements of the activity of several CPK proteins, their individual activity profile was modeled and coupled to cytosolic calcium concentration changes from in vivo measurements of guard cells and epidermal leaf cells. In addition, computationally produced surrogate data were used.

View Article and Find Full Text PDF

The rice cation/calcium exchanger OsCCX2 is involved in calcium signal clearance and osmotic tolerance.

J Integr Plant Biol

September 2025

Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.

Hyperosmolality-triggered physiological drought hinders plant growth and development, leading to a drop in crop yields. Hyperosmolality triggers calcium signaling, and yet how osmotic-induced calcium signaling participates in cellular osmotic response remains enigmatic. To date, several Ca channels and transporters have been identified to regulate osmotic-induced calcium signal generation (CaSG) or Ca homeostasis.

View Article and Find Full Text PDF

Cadmium (Cd) stress severely hampers plant growth in forest ecosystems. Although magnesium oxide nanoparticles (MgONPs) are known to reduce Cd toxicity in numerous plant species, their detoxification mechanisms in Moso bamboo () remain unexplored. The present study investigates how MgONPs mitigate the Cd-induced phytotoxic effects in by examining morpho-physiological and cellular oxidative repair mechanisms.

View Article and Find Full Text PDF