Temperature and Driving Cycle Significantly Affect Carbonaceous Gas and Particle Matter Emissions from Diesel Trucks.

Energy Fuels

Office of Research and Development, National Risk Management Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States.

Published: September 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present study examines the effects of fuel [an ultralow sulfur diesel (ULSD) versus a 20% v/v soy-based biodiesel-80% v/v petroleum blend (B20)], temperature, load, vehicle, driving cycle, and active regeneration technology on gas- and particle-phase carbon emissions from light and medium heavy-duty diesel vehicles (L/MHDDV). The study is performed using chassis dynamometer facilities that support low-temperature operation (-6.7 °C versus 21.7 °C) and heavy loads up to 12 000 kg. Organic and elemental carbon (OC-EC) composition of aerosol particles is determined using a thermal-optical technique. Gas- and particle-phase semivolatile organic compound (SVOC) emissions collected using traditional filter and polyurethane foam sampling media are analyzed using advanced gas chromatograpy/mass spectrometry methods. Study-wide OC and EC emissions are 0.735 and 0.733 mg/km, on average. The emissions factors for diesel vehicles vary widely, and use of a catalyzed diesel particle filter (CDPF) device generally mutes the carbon particle emissions in the exhaust, which contains ~90% w/w gas-phase matter. Interestingly, replacing ULSD with B20 did not significantly influence SVOC emissions, for which sums range from 0.030 to 9.4 mg/km for the L/MHDDVs. However, both low temperature and vehicle cold-starts significantly increase SVOCs in the exhaust. Real-time particle measurements indicate vehicle regeneration technology did influence emissions, although regeneration effects went unresolved using bulk chemistry techniques. A multistudy comparison of the toxic particle-phase polycyclic aromatic hydrocarbons (PAHs; molecular weight (MW) ≥ 252 amu) in diesel exhaust indicates emission factors that span up to 8 orders of magnitude over the past several decades. This study observes conditions under which PAH compounds with MW ≥ 252 amu appear in diesel particles downstream of the CDPF and can even reach low-end concentrations reported earlier for much larger HDDVs with poorly controlled exhaust streams. This rare observation suggests that analysis of PAHs in particles emitted from modern L/MHDDVs may be more complex than recognized previously.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7252512PMC
http://dx.doi.org/10.1021/acs.energyfuels.7b01446DOI Listing

Publication Analysis

Top Keywords

driving cycle
8
emissions
8
regeneration technology
8
gas- particle-phase
8
diesel vehicles
8
svoc emissions
8
≥ 252
8
252 amu
8
diesel
7
temperature driving
4

Similar Publications

An interesting ruthenium(III) complex, -[Ru(HL)Cl(PPh)], has been synthesized using a redox-active tetradentate bis-azo diamine ligand (HL). This complex represents the first example of a structurally robust, air- and moisture-stable coordination compound featuring a redox non-innocent ligand that provides a unique N4 donor set comprising both strong π-acidic (azo) and σ-donating (amido) groups. The complex has been comprehensively characterized by elemental analysis, various spectroscopic techniques, and single-crystal X-ray diffraction (SCXRD) studies.

View Article and Find Full Text PDF

From Barren Rock to Thriving Life: How Nitrogen Fuels Microbial Carbon Fixation in Deglaciated Landscapes.

Environ Sci Technol

September 2025

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.

Rapidly expanding nascent ecosystems at glacier forefields under climate warming dramatically enhance the terrestrial carbon (C) sink. Microbial C fixation and degradation, closely implicated in nitrogen (N) transformation and plant-soil-microbe interactions, significantly regulate soil C accumulation. However, how shifts in microbial functional potential impact soil C sequestration during vegetation succession remains unclear.

View Article and Find Full Text PDF

Transient Induction of Chirality from an Activated Carboxylic Acid to a Zinc Complex.

Angew Chem Int Ed Engl

September 2025

Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, Rome, I-00185, Italy.

Enantiomerically pure activated carboxylic acids (ACAs), (R)- and (S)-2-cyano-2-phenylpropanoic acids, are exploited to program the induction of chirality onto a zinc metal complex over time. NMR analysis shows that binding of the enantiopure ACA conjugate base to the Zn center breaks the symmetry of the complex and induces the formation of a single diastereoisomeric metal complex. Such a diastereoisomer is present only as long as the ACA is found in solution, and the ACA loading determines the time interval in which it persists in solution.

View Article and Find Full Text PDF

Purpose: To quantify and compare the cost, waste, and carbon emissions of single-use and reusable phacoemulsification tubing/cassettes and knives.

Setting: Private, single-specialty ambulatory surgery center (Mountain View, CA, USA).

Design: Retrospective data review.

View Article and Find Full Text PDF

Contrasting age-dependent leaf acclimation strategies drive vegetation greening across deciduous broadleaf forests in mid- to high latitudes.

Nat Plants

September 2025

Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, School of Atmospheric Sciences, School of Ecology, Sun Yat-sen University, Zhuhai, China.

Increasing leaf area and extending vegetation growing seasons are two primary drivers of global greening, which has emerged as one of the most significant responses to climate change. However, it remains unclear how these two leaf acclimation strategies would vary across forests at a large spatial scale. Here, using multiple satellite-based datasets and field measurements, we analysed the temporal changes (Δ) in maximal leaf area index (LAI) and length of the growing season (LOS) from 2002 to 2021 across deciduous broadleaf forests (DBFs) in the middle to high latitudes.

View Article and Find Full Text PDF