98%
921
2 minutes
20
Human immunodeficiency virus (HIV) preferentially infects T-lymphocytes by integrating into host DNA and forming a latent transcriptionally silent provirus. As previously shown, HIV-1 alters migration modes of T-lymphocytes by co-regulating viral gene expression with human C-X-C chemokine receptor-4 (CXCR4). Here, we show that motility of infected T-lymphocytes is cell size dependent. In cell migration assays, migrating cells are consistently larger than non-migrating cells. This effect is drug-treatment independent. The cell size dependent motility observed in a previously generated Jurkat latency model correlates with the motility of primary human CD4+ T-cells containing a modified HIV-1 full-length construct JLatd2GFP. In addition, large migrating T-cells, latently infected with HIV, show a slightly decreased rate of reactivation from latency. these results demonstrate that HIV reactivation is cell migration-dependent, where host cell size acts as a catalyst for altered migration velocity. We believe that host cell size controlled migration uncovers an additional mechanism of cellular controlled viral fate determination important for virus dissemination and reactivation from latency. This observation may provide more insights into viral-host interactions regulating cell migration and reactivation from latency and helps in the design and implementation of novel therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250449 | PMC |
http://dx.doi.org/10.36069/JoLS/20200301 | DOI Listing |
Nat Rev Mol Cell Biol
September 2025
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
The defining property of eukaryotic cells is the storage of heritable genetic material in a nuclear compartment. For eukaryotic cells to carry out the myriad biochemical processes necessary for their function, macromolecules must be efficiently exchanged between the nucleus and cytoplasm. The nuclear pore complex (NPC) - which is a massive assembly of ~35 different proteins present in multiple copies totalling ~1,000 protein subunits and architecturally conserved across eukaryotes - establishes a size-selective channel for regulated bidirectional transport of folded macromolecules and macromolecular assemblies across the nuclear envelope.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li
Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.
View Article and Find Full Text PDFEMBO Rep
September 2025
Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK post, Bellary Road, Bangalore, Karnataka, 560065, India.
Immune cells are increasingly recognized as nutrient sensors; however, their developmental role in regulating growth under homeostasis or dietary stress remains elusive. Here, we show that Drosophila larval macrophages, in response to excessive dietary sugar (HSD), reprogram their metabolic state by activating glycolysis, thereby enhancing TCA-cycle flux, and increasing lipogenesis-while concurrently maintaining a lipolytic state. Although this immune-metabolic configuration correlates with growth retardation under HSD, our genetic analyses reveal that enhanced lipogenesis supports growth, whereas glycolysis and lipolysis are growth-inhibitory.
View Article and Find Full Text PDFCell Death Dis
September 2025
Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
In recent years, there has been a rapid increase in the incidence of thyroid carcinoma (TC). Our study focuses on the regulatory effect of circular RNAs on metabolism of TC, aiming to provide new insights into the mechanisms of progression and a potential therapeutic target for TC. In this study, we identified high expression levels of circPSD3 in TC tissues through RNA sequencing.
View Article and Find Full Text PDFHum Reprod
September 2025
Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes-UMR_S1085, Rennes, France.
Study Question: What is the direct effect of mumps virus (MuV) replication within the human testis on the tissue innate immune responses and testicular cell functions?
Summary Answer: MuV induces an early pro-inflammatory response in the human testis ex vivo and infects both Leydig cells and Sertoli cells, which drastically alters testosterone and inhibin B production.
What Is Known Already: Despite widespread vaccination efforts, orchitis remains a significant complication of MuV infection, especially in young men, which potentially results in infertility in up to 87% of patients with bilateral orchitis. Our understanding of MuV pathogenesis in the human testis has been limited by the lack of relevant animal models, impairing the development of effective treatments.