Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Parkin is an E3 ubiquitin ligase well-known for facilitating clearance of damaged mitochondria by ubiquitinating proteins on the outer mitochondrial membrane. However, knowledge of Parkin's functions beyond mitophagy is still limited. Here, we demonstrate that Parkin has functions in the nucleus and that Parkinson's disease-associated Parkin mutants, ParkinR42P and ParkinG430D, are selectively excluded from the nucleus. Further, Parkin translocates to the nucleus in response to hypoxia which correlates with increased ubiquitination of nuclear proteins. The serine-threonine kinase PINK1 is responsible for recruiting Parkin to mitochondria, but translocation of Parkin to the nucleus occurs independently of PINK1. Transcriptomic analyses of HeLa cells overexpressing wild type or a nuclear-targeted Parkin revealed that during hypoxia, Parkin contributes to both increased and decreased transcription of genes involved in regulating multiple metabolic pathways. Furthermore, a proteomics screen comparing ubiquitinated proteins in hearts from Parkin and Parkin transgenic mice identified the transcription factor estrogen-related receptor α (ERRα) as a potential Parkin target. Co-immunoprecipitation confirmed that nuclear-targeted Parkin interacts with and ubiquitinates ERRα. Further analysis uncovered that nuclear Parkin increases the transcriptional activity of ERRα. Overall, our study supports diverse roles for Parkin and demonstrates that nuclear Parkin regulates transcription of genes involved in multiple metabolic pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244578PMC
http://dx.doi.org/10.1038/s41598-020-65438-7DOI Listing

Publication Analysis

Top Keywords

parkin
15
nuclear parkin
12
hypoxia parkin
8
nuclear-targeted parkin
8
transcription genes
8
genes involved
8
multiple metabolic
8
metabolic pathways
8
nuclear
4
parkin activates
4

Similar Publications

Interleukin-1β (IL-1β) is a central proinflammatory cytokine implicated in osteoarthritis (OA), but its precise role in chondrocyte apoptosis remains to be fully elucidated. In this study, we demonstrate that IL-1β triggers mitophagy in chondrocytes by promoting Parkin translocation and p62 recruitment to damaged mitochondria, thereby reducing mitochondrial dysfunction and apoptosis. Loss of p62 resulted in impaired mitophagy, excessive mitochondrial superoxide accumulation, and increased cell death.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) can re-active the immune response and induce a complete response in mismatch repair-deficient and microsatellite instability-high (dMMR/MSI-H) colorectal cancer (CRC). However, most CRCs exhibit proficient mismatch repair and microsatellite stable (pMMR/MSS) phenotypes with limited immunotherapy response because of sparse intratumoral CD8 T-lymphocyte infiltration. Cellular senescence has been reported to involve immune cell infiltration through a senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

On-liquid surface synthesis of diyne-linked two-dimensional polymer crystals.

Nat Commun

September 2025

Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.

The synthesis of thin crystalline two-dimensional polymers (2DPs) typically relies on reversible dynamic covalent reactions. While substantial progress has been made in solution-based and interfacial syntheses, achieving 2DPs through irreversible carbon-carbon coupling reactions remains a formidable challenge. Herein, we present an on-liquid surface (a mixture of N,N-dimethylacetamide and water, DMAc-HO) synthesis method for constructing diyne-linked 2DP (DY2DP) crystals via Glaser coupling, assisted by a perfluoro-surfactant (PFS) monolayer.

View Article and Find Full Text PDF

The A20 binding inhibitor of nuclear factor-kappa B (NF-κB)-1 (ABIN-1) serves as a ubiquitin sensor and autophagy receptor, crucial for modulating inflammation and cell death. Our previous in vitro investigation identified the LC3-interacting region (LIR) motifs 1 and 2 of ABIN-1 as key mitophagy regulators. This study aimed to explore the in vivo biological significance of ABIN1-LIR domains using a novel CRISPR-engineered ABIN1-ΔLIR1/2 mouse model, which lacks both LIR motifs.

View Article and Find Full Text PDF

Introduction: Prostate cancer (PC), the most common male genitourinary malignancy and second leading cause of global cancer deaths in men, frequently progresses to lethal castration-resistant PC (CRPC). Ginsenoside Rh2 (GRh2), a ginseng-derived bioactive compound, exhibits antitumor potential, but its efficacy and mechanisms in PC remain unclear.

Methods: PC3 cells were treated with GRh2 to assess proliferation (IC50 calculation), migration, and invasion.

View Article and Find Full Text PDF