Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although cell therapy-mediated cardiac repair offers promise for treatment/management of heart failure, lack of fundamental understanding of how cell therapy works limits its translational potential. In particular, whether reparative cells from failing hearts differ from cells derived from nonfailing hearts remains unexplored. Here, we assessed differences between cardiac mesenchymal cells (CMC) derived from failing (HF) versus nonfailing (Sham) hearts and whether the source of donor cells (i.e., from HF vs. Sham) limits reparative capacity, particularly when administered late after infarction. To determine the impact of the donor source of CMCs, we characterized the transcriptional profile of CMCs isolated from sham (Sham-CMC) and failing (HF-CMC) hearts. RNA-seq analysis revealed unique transcriptional signatures in Sham-CMC and HF-CMC, suggesting that the donor source impacts CMC. To determine whether the donor source affects reparative potential, C57BL6/J female mice were subjected to 60 min of regional myocardial ischemia and then reperfused for 35 days. In a randomized, controlled, and blinded fashion, vehicle, HF-CMC, or Sham-CMC were injected into the lumen of the left ventricle at 35 days post-MI. An additional 5 weeks later, cardiac function was assessed by echocardiography, which indicated that delayed administration of Sham-CMC and HF-CMC attenuated ventricular dilation. We also determined whether Sham-CMC and HF-CMC treatments affected ventricular histopathology. Our data indicate that the donor source (nonfailing vs. failing hearts) affects certain aspects of CMC, and these insights may have implications for future studies. Our data indicate that delayed administration of CMC limits ventricular dilation and that the source of CMC may influence their reparative actions. Most preclinical studies have used only cells from healthy, nonfailing hearts. Whether donor condition (i.e., heart failure) impacts cells used for cell therapy is not known. We directly tested whether donor condition impacted the reparative effects of cardiac mesenchymal cells in a chronic model of myocardial infarction. Although cells from failing hearts differed in multiple aspects, they retained the potential to limit ventricular remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474443PMC
http://dx.doi.org/10.1152/ajpheart.00114.2020DOI Listing

Publication Analysis

Top Keywords

donor source
16
cardiac mesenchymal
12
mesenchymal cells
12
cells failing
12
nonfailing hearts
12
ventricular dilation
12
failing hearts
12
sham-cmc hf-cmc
12
cells
9
hearts
8

Similar Publications

Anatomical Risk Factors for Portal Vein Complications Following Right Hepatectomy in Living Donors.

Ann Surg

September 2025

Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.

Objective: To determine the incidence, clinical outcomes, and anatomical risk factors of portal vein (PV)-related complications after right lobe donor hepatectomy (RLDH).

Summary Background Data: With the increase in living donor liver transplantation, large-scale studies on donor morbidity have been conducted to ensure donor safety. However, reports evaluating PV-related complications following right hepatectomy in living donors are lacking.

View Article and Find Full Text PDF

Recent Progress of 3D Printing Bioceramic Scaffolds for Bone Regeneration.

Tissue Eng Part B Rev

September 2025

The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.

The reconstruction of critical-sized bone defects remains a challenging clinical problem. At present, the implantation of autogenous and allogeneic grafts is the main clinical treatment strategy but faces some drawbacks, such as inadequate source, donor site-related complications, and immune rejection, driving researchers to develop artificial bone substitutes based on distinct materials and fabrication technologies. Among the bone substitutes, bioceramic-based substitutes exhibit a remarkable biocompatibility, which can also be designed to degrade concomitantly with the formation of new bone.

View Article and Find Full Text PDF

Nasal microbiome inhabitants with anti- activity.

Microbiol Spectr

September 2025

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.

Unlabelled: (SA) colonizes most mammals but also represents a danger in clinical settings because it evolves resistance against antibiotics, and SA infections represent a leading cause of death worldwide. SA nasal carriage provides the bacterial reservoir for opportunistic infection because clinical strains often match the patient's own nasally carried strain. The global SA carriage rate is typically reported as 25%-30% after sampling subjects once or twice and defining carrier status using culture-based methods.

View Article and Find Full Text PDF

Selenium (Se) is an essential trace element, and dietary Se sources can be metabolized to a shared metabolite, hydrogen selenide (HSe). HSe is the key precursor for the biosynthesis of Se-containing biomolecules and may be considered as an emerging gasotransmitter. Development of chemical tools and materials for controllable release of HSe is significant in understanding Se-related chemical biology and may open new avenues for treating some diseases.

View Article and Find Full Text PDF

In allogeneic haematopoietic stem cell transplantation (HSCT), important clinical decisions depend upon assessment of chimerism, including immunosuppressant dosing and donor lymphocyte infusions (DLI), which in turn can have major impacts on disease control, graft-versus-host disease (GVHD), immunity and ultimately patient survival. There is a complex range of clinical and laboratory procedural considerations including methodology of testing, types of cell subset selection, frequency of testing, urgency of turnaround times (TATs), interplay with measurable residual disease (MRD) monitoring and duration of testing post-transplant. These aspects are routinely adapted according to disease indication, patient characteristics, donor source and intensity of transplant technique.

View Article and Find Full Text PDF