98%
921
2 minutes
20
We assessed the association between metabolic health and markers of inflammation and of endothelial dysfunction using data from the Ewha Birth and Growth Cohort Study. The data of 195 subjects aged 13-15 years were analyzed. To assess metabolic syndrome, continuous metabolic syndrome (cMets) scores were calculated. We measured the levels of high-sensitivity C-reactive protein (hs-CRP), intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) as markers of inflammation and endothelial dysfunction. An increase of one SD in the cMets score resulted in a 1.25-fold (95% CI 1.10-1.42) increase in the risk of acute inflammatory status and a 1.26-fold (95% CI 1.11-1.43) increase in the risk of endothelial dysfunction as defined by ICAM-1, while VCAM-1 showed a meaningless trend. Of the metabolic components, body mass index (BMI) was positively associated with elevated hs-CRP levels and high-density lipoprotein cholesterol (HDL-c) levels were negatively associated with elevated ICAM-1 levels. Additionally, a mediation analysis showed that a high BMI was directly related to elevated hs-CRP levels and indirectly related to elevated ICAM-1 levels via HDL-c. Our findings show that poor metabolic health was related to an unfavorable inflammatory status and endothelial dysfunction in adolescents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239476 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233469 | PLOS |
Am J Physiol Regul Integr Comp Physiol
September 2025
Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA.
Cystathionine γ-lyase (CSE) produces hydrogen sulfide (HS), a vasodilator critical for vascular function. While its systemic effects are well-documented, its role in erectile physiology remains unclear. This study investigated the impact of CSE deletion on vascular and erectile tissue reactivity.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases.
Resistance arteries, which include small arteries and arterioles, play essential roles in regulating blood pressure and tissue perfusion. Dysfunction in these arteries can lead to various cardiovascular conditions such as hypertension, atherosclerosis, and heart failure, as well as neurovascular conditions. The examination of human resistance arteries is crucial for understanding cardiovascular disease mechanisms and developing targeted therapeutic strategies.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2025
Department of Kinesiology, University of Virginia, Charlottesville, VA, USA.
Nitric oxide (NO) is essential for cardiovascular health and is purported as an ergogenic aid. Endothelial dysfunction and reduced endogenous NO production are hallmarks of heart failure (HF), which may contribute to impaired exercise capacity. Oral inorganic nitrate supplementation offers an exogenous route to increase bioavailable NO via reduction of nitrate by oral commensal bacteria.
View Article and Find Full Text PDFAnatol J Cardiol
September 2025
Danish Cancer Institute, Danish Cancer Society, Denmark;Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark.
Environmental noise, particularly from road, rail, and aircraft traffic, is now firmly recognized as a widespread risk factor for cardiovascular disease. About 1 in 3 Europeans is exposed to chronic noise exposure above the guideline thresholds recommended by the World Health Organization (WHO), thus contributing substantially to cardiovascular morbidity and mortality. Robust evidence from recent meta-analyses links transportation noise to ischemic heart disease, heart failure, stroke, hypertension, and type 2 diabetes mellitus.
View Article and Find Full Text PDFmBio
September 2025
The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.
Unlabelled: Methicillin-resistant (MRSA) is a leading cause of endovascular infections, where interactions with endothelial cells play a critical role in pathogenesis. Gp05, a prophage-encoded protein, has previously been implicated in promoting antibiotic persistence by modulating MRSA cellular physiology and evading neutrophil-mediated killing. In this study, we investigated the role of Gp05 in MRSA-endothelial cell interactions, focusing on its impact on bacterial adhesion, invasion, cytotoxicity, and the host inflammatory response.
View Article and Find Full Text PDF