98%
921
2 minutes
20
Purpose: Current occupational heat stress guidelines rely on time-weighted averaging to quantify the metabolic demands of variable-intensity work. However, variable-intensity work may be associated with impairments in whole-body total heat loss (dry + evaporative heat loss), especially in older workers, which exacerbate heat strain relative to constant-intensity work eliciting the same time-weighted average metabolic rate. We, therefore, used direct calorimetry to evaluate whether variable-intensity work would cause decrements in the average rate of whole-body total heat loss that augment body heat storage and core temperature compared with constant-intensity work in young and older men.
Methods: Eight young (19-31 yr) and eight older (54-65 yr) men completed four trials involving 90 min of work (cycling) eliciting an average metabolic heat production of ~200 W·m in dry-heat (40°C, 20% relative humidity). One trial involved constant-intensity work (CON), whereas the others involved 10-min cycles of variable-intensity work: 5-min low-intensity and 5-min high-intensity (VAR 5:5), 6-min low-intensity and 4-min very high-intensity (VAR 6:4), and 7-min low- and 3-min very, very high-intensity (VAR 7:3). Metabolic heat production, total heat loss, body heat storage (heat production minus total heat loss), and core (rectal) temperature were measured throughout.
Results: When averaged over each 90-min work period, metabolic heat production, total heat loss, and heat storage were similar between groups and conditions (all P ≥ 0.152). Peak core temperature (average of final 10 min) was also similar between groups and conditions (both P ≥ 0.111).
Conclusions: Whole-body total heat loss, heat storage, and core temperature were not significantly influenced by the partitioning of work intensity in young or older men, indicating that time-weighted averaging appears to be appropriate for quantifying the metabolic demands of variable-intensity work to assess occupational heat stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1249/MSS.0000000000002410 | DOI Listing |
Int J Cosmet Sci
September 2025
Smart Foods and Bioproducts, AgResearch, Lincoln, New Zealand.
Objective: This study investigated the locations of amino acid modifications within two major human hair keratins (Type I K31 and Type II K85) with probable implications for protein and hair structural component integrity. The particular focus was on cysteine modifications that disrupt intra-protein and inter-protein disulphide bonds.
Methods: Human hair was exposed to accelerated, sequential heat or UV treatments, simulating effects resulting from the use of heated styling tools and environmental exposure over a time frame approximating one year.
RSC Adv
September 2025
Otto-von-Guericke-University Magdeburg, Chemical Institute, Chair for Industrial Chemistry Universitätsplatz 2 39106 Magdeburg Germany
This work elucidates the thermo-kinetics of the thermal conversion of cameroonian kaolin to metakaolin as the main product. The thermokinetical parameters (activation energy and pre-exponential factor ) for the kaolin conversion were calculated using model-free methods, the Kissinger-Akahira-Sunrose (KAS) and the Flynn-Wall-Ozawa (FWO) method, and differential methods (Kissinger and Ozawa) additionally including iterative procedures for KAS and FWO methods (KAS-Ir; FWO-Ir). The cameroonian kaolin was heat-treated using three different heating rates, 5, 20 and 40 K min, leading to metakaolin samples named MK-(5), MK-(20) and MK-(40).
View Article and Find Full Text PDFTemperature (Austin)
June 2025
Kanto Golf Association, Chuo-ku, Tokyo, Japan.
The associated factors for exertional heat stroke among amateur golfers remain poorly understood. We conducted a case-control study to examine exertional heat exhaustion (EHE) - related symptoms among amateur golfers in Japan using a self-administered questionnaire. Retrospective case-control study design.
View Article and Find Full Text PDFTemperature (Austin)
June 2025
Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
Sweating is a vital thermoregulatory mechanism in humans for maintaining thermal balance during exercise and exposure to hot environments. The development of models that predict sweat rate based on body temperature has been ongoing for over half a century. Here, we compared predicted water loss rates (WLR) from these models to actual observations collected during 780 participant-exposures in three independent laboratory-based experiments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.
The development of ultrablack coatings with exceptional absorption (>98%) has historically faced significant scientific and engineering challenges, primarily due to limitations in material selection, structural design, and practical durability. Considering the difficulties in practical applications of ultrablack materials with micro/nano structures and the limitations of planar ultrablack coatings in optical performance, we introduce an innovative integration of conventional planar ultrablack coatings with a specifically engineered trilayer antireflection architecture. This hybrid system incorporates a refractive index distribution (1.
View Article and Find Full Text PDF