Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We have determined the absolute transition probabilities of 27 emission lines of neutral argon originating from the 34→34 transition array in the wavelength region from 650 to 1100 nm using an argon-filled hollow cathode discharge lamp. The absolute transition probabilities have been deduced using the lifetimes of the upper levels and the measured branching fractions. Atomic oscillator strengths and relative line strengths for all the transitions have been computed using calculated transition probabilities. The experimentally determined transition probabilities are found to be in good agreement with that calculated in the intermediate coupling (IC) scheme. The comparison of experimentally determined transition probabilities with reported theoretical transition probabilities confirms that the IC scheme for the lower as well as for the upper levels seems to be a useful scheme for the level designation for the 34 to 34 configuration-based levels in argon. Furthermore, the measured relative line strengths are used to validate the -file sum rule for the 34→34 transition array of argon. The reported transition probabilities, oscillator strengths, and relative line strengths are compared with the published data, showing good agreement.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.393053DOI Listing

Publication Analysis

Top Keywords

transition probabilities
32
relative strengths
12
transition
10
probabilities
8
neutral argon
8
absolute transition
8
34→34 transition
8
transition array
8
upper levels
8
oscillator strengths
8

Similar Publications

A Subsystem Perspective on Vibrational Coupled Cluster Response Theory.

J Phys Chem A

September 2025

Deparment of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.

Based on a theoretical analysis of systems composed of subsystems described using a coupled cluster parametrization, we developed a vibrational coupled cluster embedding theory specifically tailored for the computation of response properties. This work identifies several strategies for calculating excitation energies, transition probabilities, and other response functions in large systems of interacting subsystems. A particularly effective embedding approach was formulated around a Lagrangian with multilinear interaction terms, yielding a structure that is nonlinear in both coupled cluster amplitudes and multipliers.

View Article and Find Full Text PDF

Cocaine use disorder (CUD) is characterized by cortico-striatal circuit dysregulation and high relapse rates, with repetitive transcranial magnetic stimulation (rTMS) emerging as a potential neuromodulatory intervention. This study investigates rTMS-induced dynamic brain network reconfigurations in 30 CUD patients using longitudinal resting-state fMRI from the SUDMEX-TMS cohort. Applying Leading Eigenvector Dynamics Analysis (LEiDA) to phase-locking states, we identified four metastable network configurations mapped to canonical resting-state networks.

View Article and Find Full Text PDF

Neural representations of visual statistical learning based on temporal duration.

Imaging Neurosci (Camb)

September 2025

Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, Japan.

Time perception is an essential aspect of daily life, and transitional probabilities can be learned based on temporal durations that are independent of individual objects. Previous studies on temporal and spatial visual statistical learning (VSL) have shown that the hippocampus and lateral occipital cortex are engaged in learning visual regularities. However, it remains unclear whether VSL on temporal duration unlinked to object identity is represented in brain regions involved in VSL and object recognition or in those involved in time perception without sensory cortex involvement.

View Article and Find Full Text PDF

: an R package to infer gene transcription rates with a novel least sum of squares method.

NAR Genom Bioinform

September 2025

Department of Internal Medicine, Nephrology Division, University of Michigan, Ann Arbor 48109 MI, United States.

The dynamics of transcriptional elongation influence many biological activities, such as RNA splicing, polyadenylation, and nuclear export. To quantify the elongation rate, a typical method is to treat cells with drugs that inhibit RNA polymerase II (Pol II) from entering the gene body and then track Pol II using Pro-seq or Gro-seq. However, the downstream data analysis is challenged by the problem of identifying the transition point between the gene regions inhibited by the drug and not, which is necessary to calculate the transcription rate.

View Article and Find Full Text PDF

When cells in a primary tumor work together to invade into nearby tissue, this can lead to cell dissociations-cancer cells breaking off from the invading front-leading to metastasis. What controls the dissociation of cells and whether they break off singly or in small groups? Can this be determined by cell-cell adhesion or chemotactic cues given to cells? We develop a physical model for this question, based on experiments that mimic aspects of cancer cell invasion using microfluidic devices with microchannels of different widths. Experimentally, most dissociation events ("ruptures") involve single cells breaking off, but we observe some ruptures of large groups (~20 cells) in wider channels.

View Article and Find Full Text PDF