98%
921
2 minutes
20
Recently, we reported that increased expression of CASP9 pro-domain, at the endosomal membrane in response to HSP90 inhibition, mediates a cell-protective effect that does not involve CASP9 apoptotic activity. We report here that a non-apoptotic activity of endosomal membrane CASP9 facilitates the retrograde transport of IGF2R/CI-MPR from the endosomes to the trans-Golgi network, indicating the involvement of CASP9 in endosomal sorting and lysosomal biogenesis. CASP9-deficient cells demonstrate the missorting of CTSD (cathepsin D) and other acid hydrolases, accumulation of late endosomes, and reduced degradation of bafilomycin A-sensitive proteins. In the absence of CASP9, IGF2R undergoes significant degradation, and its rescue is achieved by the re-expression of a non-catalytic mutant. This endosomal activity of CASP9 is potentially mediated by herein newly identified interactions of CASP9 with the components of the endosomal membrane transport complexes. These endosomal complexes include the retromer VPS35 and the SNX dimers, SNX1-SNX5 and SNX2-SNX6, which are involved in the IGF2R retrieval mechanism. Additionally, CASP9 interacts with HGS/HRS/ESCRT-0 and the CLTC (clathrin heavy chain) that participate in the initiation of the endosomal ESCRT degradation pathway. We propose that endosomal CASP9 inhibits the endosomal membrane degradative subdomain(s) from initiating the ESCRT-mediated degradation of IGF2R, allowing its retrieval to transport-designated endosomal membrane subdomain(s). These findings are the first to identify a cell survival, non-apoptotic function for CASP9 at the endosomal membrane, a site distinctly removed from the cytoplasmic apoptosome. Via its non-apoptotic endosomal function, CASP9 impacts the retrograde transport of IGF2R and, consequently, lysosomal biogenesis.: ACTB: actin beta; ATG7: autophagy related 7; BafA1: bafilomycin A; CASP: caspase; CLTC/CHC: clathrin, heavy chain; CTSD: cathepsin D; ESCRT: endosomal sorting complexes required for transport; HEXB: hexosaminidase subunit beta; HGS/HRS/ESCRT-0: hepatocyte growth factor-regulated tyrosine kinase substrate; IGF2R/CI-MPR: insulin like growth factor 2 receptor; ILV: intraluminal vesicles; KD: knockdown; KO: knockout; M6PR/CD-MPR: mannose-6-phosphate receptor, cation dependent; MEF: murine embryonic fibroblasts; MWU: Mann-Whitney U test; PepA: pepstatin A; RAB7A: RAB7, member RAS oncogene family; SNX-BAR: sorting nexin dimers with a Bin/Amphiphysin/Rvs (BAR) domain each; TGN: trans-Golgi network; TUBB: tubulin beta; VPS26: VPS26 retromer complex component; VPS29: VPS29 retromer complex component; VPS35: VPS35 retromer complex component.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204962 | PMC |
http://dx.doi.org/10.1080/15548627.2020.1761742 | DOI Listing |
Handb Exp Pharmacol
September 2025
Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Research conducted over the last 15 years indicates that cAMP is generated not just from the plasma membrane but also from intracellular compartments, particularly in endosomes, where receptors are redistributed during the endocytosis process. This review centers on the parathyroid hormone type 1 receptor (PTHR) as a model for a peptide hormone GPCRs that generates cAMP from various locations with distinct duration and pharmacological effectiveness. We discuss how structural dynamics simulations aid in designing ligands that induce cAMP location bias, ultimately answering how the spatiotemporal generation of cAMP affects pharmacological responses mediated by the PTHR.
View Article and Find Full Text PDFHandb Exp Pharmacol
September 2025
Department of Medicine, Duke University Medical Center, Durham, NC, USA.
GPCRs are known for their versatile signaling roles at the plasma membrane; however, recent studies have revealed that these receptors also function within various intracellular compartments, such as endosomes, the Golgi apparatus, and the endoplasmic reticulum. This spatially distinct signaling, termed location bias, allows GPCRs to initiate unique signaling cascades and influence cellular processes-including cAMP production, calcium mobilization, and protein phosphorylation-in a compartment-specific manner. By mapping the impact of GPCR signaling from these subcellular locations, this chapter emphasizes the mechanisms underlying signaling from intracellular receptor pools in diversifying receptor functionality.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.
View Article and Find Full Text PDFJ Cell Biol
October 2025
Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
The mechanisms governing mammalian proton pump V-ATPase function are of fundamental and medical interest. The assembly and disassembly of cytoplasmic V1 domain with the membrane-embedded V0 domain of V-ATPase is a key aspect of V-ATPase localization and function. Here, we show that the mammalian protein ATG16L1, primarily appreciated for its role in canonical autophagy and in noncanonical membrane atg8ylation processes, controls V-ATPase.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States.
Introduction: Interferon-induced transmembrane proteins (IFITMs) inhibit the entry of diverse enveloped viruses. The spectrum of antiviral activity of IFITMs is largely determined by their subcellular localization. IFITM1 localizes to and primarily blocks viral fusion at the plasma membrane, while IFITM3 prevents viral fusion in late endosomes by accumulating in these compartments.
View Article and Find Full Text PDF