Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: A major research finding in the field of Biological Psychiatry is that symptom-based categories of mental disorders map poorly onto dysfunctions in brain circuits or neurobiological pathways. Many of the identified (neuro) biological dysfunctions are "transdiagnostic", meaning that they do not reflect diagnostic boundaries but are shared by different ICD/DSM diagnoses. The compromised biological validity of the current classification system for mental disorders impedes rather than supports the development of treatments that not only target symptoms but also the underlying pathophysiological mechanisms. The Biological Classification of Mental Disorders (BeCOME) study aims to identify biology-based classes of mental disorders that improve the translation of novel biomedical findings into tailored clinical applications.

Methods: BeCOME intends to include at least 1000 individuals with a broad spectrum of affective, anxiety and stress-related mental disorders as well as 500 individuals unaffected by mental disorders. After a screening visit, all participants undergo in-depth phenotyping procedures and omics assessments on two consecutive days. Several validated paradigms (e.g., fear conditioning, reward anticipation, imaging stress test, social reward learning task) are applied to stimulate a response in a basic system of human functioning (e.g., acute threat response, reward processing, stress response or social reward learning) that plays a key role in the development of affective, anxiety and stress-related mental disorders. The response to this stimulation is then read out across multiple levels. Assessments comprise genetic, molecular, cellular, physiological, neuroimaging, neurocognitive, psychophysiological and psychometric measurements. The multilevel information collected in BeCOME will be used to identify data-driven biologically-informed categories of mental disorders using cluster analytical techniques.

Discussion: The novelty of BeCOME lies in the dynamic in-depth phenotyping and omics characterization of individuals with mental disorders from the depression and anxiety spectrum of varying severity. We believe that such biology-based subclasses of mental disorders will serve as better treatment targets than purely symptom-based disease entities, and help in tailoring the right treatment to the individual patient suffering from a mental disorder. BeCOME has the potential to contribute to a novel taxonomy of mental disorders that integrates the underlying pathomechanisms into diagnoses.

Trial Registration: Retrospectively registered on June 12, 2019 on ClinicalTrials.gov (TRN: NCT03984084).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216390PMC
http://dx.doi.org/10.1186/s12888-020-02541-zDOI Listing

Publication Analysis

Top Keywords

mental disorders
48
mental
13
disorders
12
biological classification
8
classification mental
8
disorders study
8
categories mental
8
affective anxiety
8
anxiety stress-related
8
stress-related mental
8

Similar Publications

Introduction: We compared and measured alignment between the Health Level Seven (HL7) Fast Healthcare Interoperability Resources (FHIR) standard used by electronic health records (EHRs), the Clinical Data Interchange Standards Consortium (CDISC) standards used by industry, and the Uniform Data Set (UDS) used by the Alzheimer's Disease Research Centers (ADRCs).

Methods: The ADRC UDS, consisting of 5959 data elements across eleven packets, was mapped to FHIR and CDISC standards by two independent mappers, with discrepancies adjudicated by experts.

Results: Forty-five percent of the 5959 UDS data elements mapped to the FHIR standard, indicating possible electronic obtainment from EHRs.

View Article and Find Full Text PDF

Neuroimaging Data Informed Mood and Psychosis Diagnosis Using an Ensemble Deep Multimodal Framework.

Hum Brain Mapp

September 2025

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.

View Article and Find Full Text PDF

Background: Mental health (MH) problems are more common in people with intellectual disabilities (ID), yet under-diagnosis persists, which may be partly due to a lack of appropriate assessment tools. This study presents a systematic review of instruments used to assess MH problems in Spanish-speaking adults with ID.

Method: Following PRISMA guidelines, a search was conducted in Web of Science, PsycINFO, and Scopus using terms related to ID, MH and assessment.

View Article and Find Full Text PDF