Assembly of eukaryotic photosystem II with diverse light-harvesting antennas.

Curr Opin Struct Biol

National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China. Electronic address:

Published: August 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photosystem II (PSII) catalyzes the light-driven oxygen-evolving reaction via its catalytic core and peripheral light-harvesting antennas. Oxyphototrophs have evolved diverse antenna systems, enabling them to adapt to different habitats. Recently, high-resolution structures of PSII-antenna supercomplexes from the green lineage (higher plants and green algae) and the red lineage (diatoms) were solved. The antenna complexes from the two lineages share similar protein folding, but differ in terms of the oligomeric states, pigment composition, and assembly patterns with the core. These differences result in distinct pigment-protein networks in PSII from different organisms. We herein summarize the similarities and differences in these structures and outline the molecular basis of the assembly, energy transfer, and regulation of the eukaryotic PSII-antenna supercomplexes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.sbi.2020.03.007DOI Listing

Publication Analysis

Top Keywords

light-harvesting antennas
8
psii-antenna supercomplexes
8
assembly eukaryotic
4
eukaryotic photosystem
4
photosystem diverse
4
diverse light-harvesting
4
antennas photosystem
4
photosystem psii
4
psii catalyzes
4
catalyzes light-driven
4

Similar Publications

Effect of Oxygen Exposure on the Triplet Excitation Dynamics of the Monomeric LHCII Complex from Spinach.

J Phys Chem B

September 2025

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.

Light-harvesting complex IIs (LHCIIs) are the major antenna in higher plants, balancing light capture through photoprotection. While it naturally forms trimers, stress conditions can induce monomerization, altering pigment interactions. Here, we explored how molecular oxygen affects triplet excited-state dynamics in LHCII monomers using time-resolved transient absorption spectroscopy under aerobic and anaerobic conditions.

View Article and Find Full Text PDF

Photosynthetic organisms have evolved diverse strategies to adapt to fluctuating light conditions, balancing efficient light capture with photoprotection. In green algae and land plants, this involves specialized light-harvesting complexes (LHCs), non-photochemical quenching, and state transitions driven by dynamic remodeling of antenna proteins associated with Photosystems (PS) I and II. Euglena gracilis, a flagellate with a secondary green plastid, represents a distantly related lineage whose light-harvesting regulation remains poorly understood.

View Article and Find Full Text PDF

Microbial rhodopsins are photoreceptor proteins widely distributed in marine microorganisms that harness light energy and support marine ecosystems. While retinal is typically the sole chromophore in microbial rhodopsins, some proteorhodopsins, which are proton-pumping rhodopsins abundant in the ocean, use carotenoid antennae to transfer light energy to retinal. However, the mechanism by which carotenoids enhance rhodopsin functions remains unclear.

View Article and Find Full Text PDF

The design of efficient artificial light-harvesting antennas is essential for enabling the widespread use of solar energy. Natural photosynthetic systems offer valuable inspiration, but many rely on complex pigment-protein interactions and have limited spectral coverage, which pose challenges for rational design. Chlorosome mimics, which are self-assembling pigment aggregates inspired by green photosynthetic bacteria, offer structural simplicity, flexible tunability, and strong excitonic coupling through pigment-pigment interactions.

View Article and Find Full Text PDF

Pelargonium graveolens, valued for its essential oil, is significantly influenced by its endosymbiotic associations impacting its physiology and phytochemistry, though the exact mechanisms driving this modulation remain largely unexplored. This study unveils that inoculating Pseudomonas oryzihabitans CB24 into P. graveolens significantly alters plant's lipid dynamics, leading to increased accumulation of chloroplast glycerolipids like monogalactosyldiacylglycerol (MGDG) and sulfolipids, sulfoquinovosyldiacylglycerol (SQDG).

View Article and Find Full Text PDF