Distinct fMRI patterns colocalized in the cingulate cortex underlie the after-effects of cognitive control on pain.

Neuroimage

Research Center of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, Canada; Groupe de recherche sur le système nerveux Central, Université de Montréal, Montréal, Canada; Department of Stomatology, Université de Montréal, Montréal, Canada.

Published: August 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Demanding tasks can influence following behaviors but the underlying mechanisms remain largely unclear. In the present functional magnetic resonance imaging (fMRI) study, we used multivariate pattern analyses (MVPA) to compare patterns of brain activity associated with pain in response to noxious stimuli administered after a task requiring cognitive control (Stroop) and evaluate their functional interaction based on a mediation analysis model. We found that performing a difficult cognitive task leads to subsequent increases in pain and pain-related multivariate responses across the brain and within the anterior mid-cingulate cortex (aMCC). Moreover, an aMCC pattern predictive of task performance was further reactivated during pain and predicted ensuing increases in pain-related brain responses. This suggests functional interactions between distinct but partly co-localized neural networks underlying executive control and pain. These findings offer a new perspective on the functional role of the cingulate cortex in pain and cognition and provide a promising framework to investigate dynamical interactions between partly overlapping brain networks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2020.116898DOI Listing

Publication Analysis

Top Keywords

cingulate cortex
8
cognitive control
8
control pain
8
pain
6
distinct fmri
4
fmri patterns
4
patterns colocalized
4
colocalized cingulate
4
cortex underlie
4
underlie after-effects
4

Similar Publications

Distinct cerebellar networks underpin clinical improvement in adolescent Tourette disorder.

Brain

September 2025

Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 75013 Paris, France.

Adolescence is frequently called the second brain maturation period. In Tourette disorder (TD), the clinical trajectory of tics and associated psychiatric co-morbidities vary significantly across individuals during the transition from adolescents to adulthood. In this study, we aimed to identify patterns of resting-state functional connectivity that differentiate adolescents with TD from their neurotypical peers, and to monitor symptom-specific functional changes over time.

View Article and Find Full Text PDF

Introduction: Interpretation and analysis of magnetic resonance imaging (MRI) scans in clinical settings comprise time-consuming visual ratings and complex neuroimage processing that require trained professionals. To combat these challenges, artificial intelligence (AI) techniques can aid clinicians in interpreting brain MRI for accurate diagnosis of neurodegenerative diseases but they require extensive validation. Thus, the aim of this study was to validate the use of AI-based AQUA (Neurophet Inc.

View Article and Find Full Text PDF

This study aimed to identify brain activity modulations associated with different types of visual tracking using advanced functional magnetic resonance imaging techniques developed by the Human Connectome Project (HCP) consortium. Magnetic resonance imaging data were collected from 27 healthy volunteers using a 3-T scanner. During a single run, participants either fixated on a stationary visual target (fixation block) or tracked a smoothly moving or jumping target (smooth or saccadic tracking blocks), alternating across blocks.

View Article and Find Full Text PDF

This case study reports the first documented use of stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC) to treat refractory status epilepticus (RSE). A 33-year-old woman with drug-resistant epilepsy and recurrent RSE underwent SEEG to define her epileptogenic zone. A new RSE started shortly before and continued during the SEEG exploration, being unresponsive to multiple antiseizure medications, vagal nerve stimulation, and corticosteroid therapy.

View Article and Find Full Text PDF

Slapping automatism in epileptic seizures: a case series.

Front Hum Neurosci

August 2025

Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.

Background: Slapping automatism is a type of automatism observed during epileptic seizures, but its underlying electrophysiological mechanisms remain poorly understood. Stereo-electroencephalography (SEEG) provides a unique opportunity to investigate the associated cortical areas with epileptiform discharges during the slapping automatism.

Case Report: We report five cases of drug-resistant epilepsy in which SEEG recordings captured slapping automatism.

View Article and Find Full Text PDF