98%
921
2 minutes
20
In eukaryotic cells, a spindle assembly checkpoint (SAC) ensures accurate chromosome segregation, by monitoring proper attachment of chromosomes to spindle microtubules and delaying mitotic progression if connections are erroneous or absent. The SAC is thought to be relaxed during early embryonic development. Here, we evaluate the checkpoint response to lack of kinetochore-spindle microtubule interactions in early embryos of diverse animal species. Our analysis shows that there are two classes of embryos, either proficient or deficient for SAC activation during cleavage. Sea urchins, mussels, and jellyfish embryos show a prolonged delay in mitotic progression in the absence of spindle microtubules from the first cleavage division, while ascidian and amphioxus embryos, like those of and zebrafish, continue mitotic cycling without delay. SAC competence during early development shows no correlation with cell size, chromosome number, or kinetochore to cell volume ratio. We show that SAC proteins Mad1, Mad2, and Mps1 lack the ability to recognize unattached kinetochores in ascidian embryos, indicating that SAC signaling is not diluted but rather actively silenced during early chordate development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290841 | PMC |
http://dx.doi.org/10.3390/cells9051087 | DOI Listing |
Mol Cell
September 2025
Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria. Electronic address:
PIWI-clade Argonaute proteins and their associated PIWI-interacting RNAs (piRNAs) are essential guardians of genome integrity, silencing transposable elements through distinct nuclear and cytoplasmic pathways. Nuclear PIWI proteins direct heterochromatin formation at transposon loci, while cytoplasmic PIWIs cleave transposon transcripts to initiate piRNA amplification. Both processes rely on target RNA recognition by PIWI-piRNA complexes, yet how this leads to effector recruitment is unclear.
View Article and Find Full Text PDFMol Cell
September 2025
Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA. Electronic address:
In animal germ cells, PIWI proteins use piRNAs to detect active selfish genetic elements. Base-pairing to a piRNA defines transposon recognition, but how this interaction triggers a defensive response remains unclear. Here, we identify a transposon recognition complex composed of the silkworm proteins Siwi, GTSF1, and Maelstrom.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
Mammalian female meiosis is uniquely regulated to produce a developmentally competent egg capable of supporting embryogenesis. During meiosis I, homologous chromosomes segregate, with half extruded into the first polar body. The egg then arrests at metaphase II and only resumes meiosis and extrudes the second polar body following fertilization.
View Article and Find Full Text PDFThe parasitic protozoan assembles a bipolar mitotic spindle and undergoes a closed mitosis to segregate its megabase chromosomes and mini-chromosomes through mechanisms that are distinct from its mammalian host. This parasite employs a subset of trypanosome-specific nucleus- and spindle-associated proteins (NuSAPs) to regulate mitosis, but the mechanistic roles of these proteins remain poorly understood. Here, we performed biochemical and molecular characterization of NuSAP1 and analyzed the functional interplay of NuSAP1 with its interacting and proximal proteins.
View Article and Find Full Text PDFSci Bull (Beijing)
August 2025
Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China. Electronic address:
The microtubule organizing centers (MTOCs) of human and mouse oocytes are essential for meiotic spindle assembly and for ensuring precise chromosome segregations. Previous studies mainly focus on investigating MTOCs changes in metaphase I oocyte. However, the detailed dynamic changes and underlying mechanisms of the MTOCs in germinal vesicle (GV) oocytes-a stage that early events of MTOC maturation happened- remain unclear.
View Article and Find Full Text PDF