Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Adult adipose tissue-derived mesenchymal stem cells (ASCs) constitute a vital population of multipotent cells capable of differentiating into numerous end-organ phenotypes. However, scientific and translational endeavors to harness the regenerative potential of ASCs are currently limited by an incomplete understanding of the mechanisms that determine cell-lineage commitment and stemness. In the current study, we used reduced representation bisulfite sequencing (RRBS) analysis to identify epigenetic gene targets and cellular processes that are responsive to 5'-azacitidine (5'-AZA). We describe specific changes to DNA methylation of ASCs, uncovering pathways likely associated with the enhancement of their proliferative capacity. We identified 4,797 differentially methylated regions (FDR < 0.05) associated with 3,625 genes, of which 1,584 DMRs annotated to the promoter region. Gene set enrichment of differentially methylated promoters identified "phagocytosis," "type 2 diabetes," and "metabolic pathways" as disproportionately hypomethylated, whereas "adipocyte differentiation" was the most-enriched pathway among hyper-methylated gene promoters. Weighted coexpression network analysis of DMRs identified clusters associated with cellular proliferation and other developmental programs. Furthermore, the ELK4 binding site was disproportionately hyper-methylated within the promoters of genes associated with AKT signaling. Overall, this study offers numerous preliminary insights into the epigenetic landscape that influences the regenerative capacity of human ASCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174643PMC
http://dx.doi.org/10.3389/fgene.2020.00346DOI Listing

Publication Analysis

Top Keywords

dna methylation
8
mesenchymal stem
8
stem cells
8
differentially methylated
8
differential dna
4
methylation encodes
4
encodes proliferation
4
proliferation senescence
4
senescence programs
4
programs human
4

Similar Publications

Epigenetic processes, such as DNA methylation, show potential as biological markers and mechanisms underlying gene-environment interplay in the prediction of mental health and other brain-based phenotypes. However, little is known about how peripheral epigenetic patterns relate to individual differences in the brain itself. An increasingly popular approach to address this is by combining epigenetic and neuroimaging data; yet, research in this area is almost entirely comprised of cross-sectional studies in adults.

View Article and Find Full Text PDF

Uterine leiomyosarcoma (uLMS) is a rare and deadly gynecologic malignancy. uLMS is histologically heterogeneous and presents with a wide spectrum of tumor differentiation, with a broad range of genomic DNA instability, which can make the diagnosis and prognosis of uLMS challenging. Methylation has emerged as a useful molecular tool in tumor classification and diagnosis in certain neoplasms.

View Article and Find Full Text PDF

Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health.

View Article and Find Full Text PDF

Biochemical reconstitution of temozolomide-induced mutational processes.

J Biol Chem

September 2025

Department of Biological Sciences, Ohio University, Athens, Ohio, United States of America; Molecular and Cellular Biology Graduate Program, Ohio University, Athens, Ohio, United States of America. Electronic address:

Temozolomide (TMZ), a DNA alkylator, is a chemotherapeutic agent for brain tumors, but the treatment induces a distinct pattern of mutations, known as a cancer mutational signature SBS11. Although the correlation between TMZ treatment and SBS11 mutations is very clear, the precise biochemical mechanisms that cause SBS11 have not been elucidated. TMZ can alkylate DNA at several locations, among which O-methylguanine (Ome-G) is believed to be most toxic.

View Article and Find Full Text PDF

Alternative splicing enables cells to acquire novel phenotypic traits for adaptation to changes in the environment. However, the mechanisms that allow these dynamic changes to occur in a timely and sustained manner remain unknown. Recent investigations unveiled a new regulatory layer important for splicing dynamics and memory: the chromatin.

View Article and Find Full Text PDF