98%
921
2 minutes
20
Biophysical techniques that enable the screening and identification of weak affinity fragments against a target protein are at the heart of Fragment Based Drug Design approaches. In the case of membrane proteins, the crucial criteria for fragment screening are low protein consumption, unbiased conformational states and rapidity because of the difficulties in obtaining sufficient amounts of stable and functionally folded proteins. Here we show for the first time that lipid-nanodisc systems (membrane-mimicking environment) and miniaturized affinity chromatography can be combined to identify specific small molecule ligands that bind to an integral membrane protein. The approach was exemplified using the AAR GPCR. Home-made affinity nano-columns modified with nanodiscs-embedded AAR (only about 1 μg of protein per column) were fully characterized by frontal chromatographic experiments. This method allows (i) to distinguish specific and unspecific ligand/receptor interactions, (ii) to assess dissociation constants, (iii) to identify the binding pocket of uncharacterized ligands using a reference compound (whose binding site is known) with competition experiments. Weak affinity ligands with Kd in the low to high micromolar range can be detected. At last, the applicability of this method was demonstrated with 6 fragments recently identified as ligands or non-ligands of AAR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2020.03.062 | DOI Listing |
Cell Rep Methods
September 2025
Lingang Laboratory, Shanghai 201306, China. Electronic address:
While affinity purification-mass spectrometry (AP-MS) has significantly advanced protein-protein interaction (PPI) studies, its limitations in detecting weak, transient, and membrane-associated interactions remain. To address these challenges, we introduced a proteomic method termed affinity purification coupled proximity labeling-mass spectrometry (APPLE-MS), which combines the high specificity of Twin-Strep tag enrichment with PafA-mediated proximity labeling. This method achieves improved sensitivity while maintaining high specificity (4.
View Article and Find Full Text PDFPLoS Pathog
September 2025
Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
Respiratory syncytial virus (RSV), the most common cause of bronchiolitis and pneumonia in infants, elicits a remarkably weak innate immune response. This is partly due to type I interferon (IFN) antagonism by the non-structural RSV NS1 protein. It was recently suggested that NS1 could modulate host transcription via an interaction with the MED25 subunit of the Mediator complex.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Material Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang, Beijing 100029, China.
The construction of perfluoropolyether (PFPE) slippery liquid-infused porous surfaces (SLIPS) on gold coatings is one of the most effective strategies for bestowing anticoagulation and antimicrobial properties on the material. However, the poor chemical affinity between fluorinated porous precursors and gold substrates causes the agglomeration of nanostructures, resulting in uneven nanoporous morphology and accelerating lubricant leakage. Simultaneously, the weak interfacial adhesion between the nanostructures and the substrate may lead to the detachment of nanostructures under blood circulation.
View Article and Find Full Text PDFMikrochim Acta
September 2025
State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound
The precise and selective determination of ginsenosides, pharmacologically diverse saponins abundant in Panax species, is crucial for their therapeutic development and stringent quality control. However, inherent challenges, including their weak ultraviolet absorption and the high polarity imparted by sugar moieties, complicate their determination. Addressing these limitations, this study introduces the first-time construction and application of a boronate affinity dendritic mesoporous silica nanomaterial (BA-DMSN) as a highly efficient adsorbent for ginsenoside pretreatment.
View Article and Find Full Text PDFDrug Test Anal
September 2025
Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Bern, Switzerland.
Tetrahydrocannabidiol (H4CBD) is an emerging semisynthetic cannabinoid, which has been known since 1940. Like hexahydrocannabinol (HHC), it is easily obtained by hydrogenation of available phytocannabinoids, in the case of H4CBD by hydrogenation of cannabidiol (CBD). H4CBD shows a weak affinity for the CB receptor, but it is unclear if H4CBD shows psychoactive properties, as reports from users are divided.
View Article and Find Full Text PDF