Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pyrimidine biosynthetic pathway enzymes constitute an important target for the development of antitumor drugs. To understand the role of binding mechanisms underlying the inborn errors of pyrimidine biosynthetic pathway, structure and function of enzymes have been analyzed. Pyrimidine biosynthetic pathway is initiated by CAD enzymes that harbor the first three enzymatic activities facilitated by Carbamoyl Phosphate Synthetase (CPSase), Aspartate Transcarbamoylase (ATCase) and Dihydroorotase (DHOase). While being an attractive therapeutic target, the lack of data driven us to study the CPSase (CarA and CarB) and its mode of binding to ATCase and DHOase which are the major limitation for its structural optimization. Understanding the binding mode of CPSase, ATCase and DHOase could help to identify the potential interface hotspot residues that favor the mechanism behind it. The mechanistic insight into the CAD complexes were achieved through Molecular modeling, Protein-Protein docking, Alanine scanning and Molecular dynamics (MD) Studies. The hotspot residues present in the CarB region of carboxy phosphate and carbamoyl phosphate synthetic domains are responsible for the assembly of CAD (CPSase-ATCase-DHOase) complexes. Overall analysis suggests that the identified hotspot residues were confirmed by alanine scanning and important for the regulation of pyrimidine biosynthesis. MD simulations analysis provided the prolonged stability of the interacting complexes. The present study reveals the novel hotspot residues such as Glu134, Glu147, Glu154, Asp266, Lys269, Glu274, Asp333, Trp459, Asp526, Asp528, Glu533, Glu544, Glu546, Glu800, Val855, Asp877, Tyr884 and Gln919 which could be targeted for structure-based inhibitor design to potentiate the CAD mediated regulation of aggressive tumors.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2020.1761877DOI Listing

Publication Analysis

Top Keywords

hotspot residues
16
atcase dhoase
12
pyrimidine biosynthetic
12
biosynthetic pathway
12
cad complexes
8
cpsase atcase
8
carbamoyl phosphate
8
alanine scanning
8
cad
5
structural insights
4

Similar Publications

The TRPA1 channel has recently emerged as a critical target for pain relief since its antagonists target the beginning of the pain transduction pathway and, thus, are devoid of side effects such as sedation, dizziness, somnolence, or cognitive impairment. Despite this clinical significance, currently, no TRPA1 inhibitors suitable for therapeutic usage exist to target these channels. Since ancient times, natural products have been known to be a rich source of new drugs, useful therapeutic agents, as well as pharmacological tools.

View Article and Find Full Text PDF

Dissecting the Molecular Determinants of α-synuclein Phase Separation and Condensate Aging: The Pivotal Role of β-Sheet-Rich Motifs.

Adv Sci (Weinh)

September 2025

Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433, China.

Emerging evidence indicates that liquid-liquid phase separation of α-synuclein occurs during the nucleation step of its aggregation, a pivotal step in the onset of Parkinson's disease. Elucidating the molecular determinants governing this process is essential for understanding the pathological mechanisms of diseases and developing therapeutic strategies that target early-stage aggregation. While previous studies have identified residues critical for α-synuclein amyloid formation, the key residues and molecular drivers of its phase separation remain largely unexplored.

View Article and Find Full Text PDF

Life cycle assessment of large-scale integrated organic crop-egg production in Brazil.

Sci Total Environ

September 2025

UCD School of Biosystems and Food Engineering, University College Dublin, Ireland; BiOrbic Bioeconomy, SFI Research Centre, Ireland.

Integrated crop-livestock systems combine feed production with animal production as separate, but interconnected operations. This study presents the first Life Cycle Assessment (LCA) of a large scale, integrated, organic egg production system in Brazil and the first worldwide assessment of a large-scale integrated crop-poultry system. This research provides insights into eco-efficiency, offering guidance for sustainable practices in Brazil and beyond.

View Article and Find Full Text PDF

Hot-Spot-Guided Generative Deep Learning for Drug-Like PPI Inhibitor Design.

Interdiscip Sci

September 2025

State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, C

Protein-protein interactions (PPIs) are essential therapeutic targets, yet their large and relatively flat interfaces hinder the development of small-molecule inhibitors. Traditional computational approaches rely heavily on existing chemical libraries or expert heuristics, restricting exploration of novel chemical space. To address these challenges, we present Hot2Mol, a generative deep learning framework for the de novo design of target-specific and drug-like PPI inhibitors.

View Article and Find Full Text PDF

Introduction: The rapid evolution of SARS-CoV-2 Omicron variants highlights the urgent need for therapeutic strategies that can target viral evolution and leverage host immune recognition mechanisms. This study uses molecular dynamics (MD) simulations to analyze the immune evasion mechanisms of class 1 nanobodies against emerging SARS-CoV-2 variants, and to develop an efficient pipeline for rapid affinity optimization.

Methods: We employed MD simulations and binding free energy calculations to investigate the immune evasion mechanisms of four class 1 nanobodies (R14, DL4, V ab6, and Nanosota9) against wild-type (WT) and Omicron variants, including BA.

View Article and Find Full Text PDF