98%
921
2 minutes
20
Atypical porcine pestivirus (APPV) is a novel pestivirus causing congenital tremor (CT) type AII in piglets and exhibiting a broad geographical distribution. Lack of an operating system for the viral genome is one of bottlenecks which restrict further research on pathogenesis and gene functions of APPV. Reverse genetics system (RGS) is a feasible solution to this bottleneck problem, but, to-date, no RGSs have been developed for APPV. Here, for the first time, recombinant APPV CH-GD2017 were rescued using in vitro and intracellular transcription systems and the virons were observed via transmission electron microscopy. As the process of in vitro transcription is time-consuming and inefficient, a full-length cDNA clone in an intracellular transcription was further constructed using an RNA polymerase II system. Then, the rescued virus was identified via RT-PCR detection, indirect immunofluorescent assay, and transmission electron microscopy. Development of the RGS for APPV will provide an important tool for further research on this newly emerging pathogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virusres.2020.197975 | DOI Listing |
Sci Adv
September 2025
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
Breastfeeding is essential for reducing infant morbidity and mortality, yet exclusive breastfeeding rates remain low, often because of insufficient milk production. The molecular causes of low milk production are not well understood. Fresh milk samples from 30 lactating individuals, classified by milk production levels across postpartum stages, were analyzed using genomic and microbiome techniques.
View Article and Find Full Text PDFPLoS One
September 2025
Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America.
The study of plant biology has traditionally focused on investigations conducted at the tissue, organ, or whole plant level. However, single-cell transcriptomics has recently emerged as an important tool for plant biology, enabling researchers to uncover the expression profiles of individual cell types within a tissue. The application of this tool has revealed new insights into cell-to-cell gene expression heterogeneity and has opened new avenues for research in plant biology.
View Article and Find Full Text PDFElife
September 2025
Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, United States.
The obligate intracellular bacterium alternates between two functional forms during its developmental cycle: elementary body (EB) and reticulate body (RB). However, the molecular mechanisms governing the transitions between these forms are unknown. Here, we present evidence that cyclic di-AMP (c-di-AMP) is a key factor in triggering the transition from RB to EB (i.
View Article and Find Full Text PDFMol Cell Biol
September 2025
Department of Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Erythropoiesis, i.e., process of red blood cell (RBC) production, is highly dependent on iron, with 60-70% of the total body iron incorporated into hemoglobin.
View Article and Find Full Text PDFJ Appl Toxicol
September 2025
School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China.
Polystyrene nanoparticles (PS-NPs) are prevalent environmental contaminants that can accumulate in biological tissues. This study investigates the effects of PS-NPs on TM4 cells, a Sertoli cell line crucial for maintaining the male spermatogenesis microenvironment.TM4 cells were exposed to PS-NPs (0-100 μg/mL) duration of 24 to 72 h.
View Article and Find Full Text PDF