Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This work reports on a rapid diagnostic platform for the detection of Plasmodium falciparum lactate dehydrogenase (PfLDH), a representative malaria biomarker, using a microfluidic microplate-based immunoassay. In this study, the microfluidic microplate made it possible to diagnose PfLDH with a small volume of sample (only 5 μL) and short time (< 90 min) compared to conventional immunoassays such as enzyme-linked immunosorbent assay (ELISA). Moreover, the diagnostic performance of PfLDH showed high sensitivity, specificity, and selectivity (i.e., 0.025 pg/μL in phosphate-buffered saline and 1 pg/μL in human serum). The microfluidic-based microplate sensing platform has the potential to adapt simple, rapid, and accurate diagnoses to the practical detection of malaria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150666PMC
http://dx.doi.org/10.1186/s40580-020-00223-wDOI Listing

Publication Analysis

Top Keywords

diagnostic platform
8
plasmodium falciparum
8
falciparum lactate
8
lactate dehydrogenase
8
simple rapid
4
rapid accurate
4
accurate malaria
4
malaria diagnostic
4
platform microfluidic-based
4
microfluidic-based immunoassay
4

Similar Publications

Cardiovascular diseases (CVDs) remain a leading cause of death, particularly in developing countries, where their incidence continues to rise. Traditional CVD diagnostic methods are often time-consuming and inconvenient, necessitating more efficient alternatives. Rapid and accurate measurement of cardiac biomarkers released into body fluids is critical for early detection, timely intervention, and improved patient outcomes.

View Article and Find Full Text PDF

This study aimed to identify brain activity modulations associated with different types of visual tracking using advanced functional magnetic resonance imaging techniques developed by the Human Connectome Project (HCP) consortium. Magnetic resonance imaging data were collected from 27 healthy volunteers using a 3-T scanner. During a single run, participants either fixated on a stationary visual target (fixation block) or tracked a smoothly moving or jumping target (smooth or saccadic tracking blocks), alternating across blocks.

View Article and Find Full Text PDF

What are we missing? What are we assuming? The need to foster feature discovery tools to improve statistical models.

Cereb Cortex

August 2025

Section on Functional Imaging Methods & Functional MRI Core Facility, National Institute of Mental Health, 10 Center Drive, Rm 1D80, Bethesda, MD 20892, United States.

Statistical Parametric Mapping (SPM) has been profoundly influential to neuroimaging as it has fostered rigorous, statistically grounded structure for model-based inferences that have led to mechanistic insights about the human brain over the past 30 years. The statistical constructs shared with the world through SPM have been instrumental for deriving meaning from neuroimaging data; however, they require simplifying assumptions which can provide results that, while statistically sound, may not accurately reflect the mechanisms of brain function. A platform that fosters the exploration of the rich and varying neuronal and physiologic underpinnings of the measured signals and their associations to behavior and physiologic measures needs a different set of tools.

View Article and Find Full Text PDF

Development of dental caries is a dynamic process; yet, there is limited knowledge on microbial differences at various stages of caries at higher resolution. To investigate the shifting microbiome profiles across different caries stages, 30 children were enrolled in this study, including 15 caries-active patients and 15 caries-free individuals. Plaque samples were collected from the buccal surface of caries-free subjects, defined as confident health (CH; = 15).

View Article and Find Full Text PDF

The novel multifunctional theranostic platform is highly regarded in clinical applications, often achieving desired outcomes in real-time tumor monitoring and personalized treatment. Paramagnetic micron/nanoparticles often exhibit strong magnetic resonance imaging (MRI) contrast and high photothermal conversion efficiency, making them a powerful alternative to small-molecule contrast agents for MRI diagnostics. Additionally, these particles possess high modifiability, making them highly promising for clinical use in dual-modal imaging-guided personalized tumor therapy.

View Article and Find Full Text PDF