Systems metabolomics: from metabolomic snapshots to design principles.

Curr Opin Biotechnol

Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; ISBE.IT, SYSBIO Centre of Systems Biology, Piazza della Scienza 2, Milan 20126, Italy. Electronic address:

Published: June 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metabolomics is a rapidly expanding technology that finds increasing application in a variety of fields, form metabolic disorders to cancer, from nutrition and wellness to design and optimization of cell factories. The integration of metabolic snapshots with metabolic fluxes, physiological readouts, metabolic models, and knowledge-informed Artificial Intelligence tools, is required to obtain a system-level understanding of metabolism. The emerging power of multi-omic approaches and the development of integrated experimental and computational tools, able to dissect metabolic features at cellular and subcellular resolution, provide unprecedented opportunities for understanding design principles of metabolic (dis)regulation and for the development of precision therapies in multifactorial diseases, such as cancer and neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.copbio.2020.02.013DOI Listing

Publication Analysis

Top Keywords

design principles
8
metabolic
6
systems metabolomics
4
metabolomics metabolomic
4
metabolomic snapshots
4
snapshots design
4
principles metabolomics
4
metabolomics rapidly
4
rapidly expanding
4
expanding technology
4

Similar Publications

Background: The benefits of physical activity for frail older acutely hospitalized adults are becoming increasingly clear. To enhance opportunities for physical activity on geriatric wards, it is essential to understand the older adult's perspective.

Aim: The aim of the study was to explore the experiences and perceptions of physical activity among older adults during hospital stays on a geriatric ward.

View Article and Find Full Text PDF

Navigating condensate micropolarity to enhance small-molecule drug targeting.

Nat Chem Biol

September 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

Many pharmaceutical targets partition into biomolecular condensates, whose microenvironments can significantly influence drug distribution. Nevertheless, it is unclear how drug design principles should adjust for these targets to optimize target engagement. To address this question, we systematically investigated how condensate microenvironments influence drug-targeting efficiency.

View Article and Find Full Text PDF

Objective: To determine the effect of a prepregnancy lifestyle intervention on glucose tolerance in people at higher risk of gestational diabetes mellitus.

Design: Single centre randomised controlled trial (BEFORE THE BEGINNING).

Setting: University hospital in Trondheim, Norway.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) and social communication disorder (SCD) are neurodevelopmental disorders characterized by deficits in social communication that hinder social adaptation, with limited pharmacological options for therapy owing to the absence of identified biomarkers. Individuals with ASD or SCD require lifelong interventions tailored to their development stages. However, most existing interventions primarily focus on early childhood, leaving adolescents relatively underserved.

View Article and Find Full Text PDF

From Beetle to Bot: Bioinspired Design of Robotic Grippers Based on Stag Beetle Mandible Biomechanics.

Bioinspir Biomim

September 2025

Mechanical Intelligence (MI) Research Group, London South Bank University, 103 Borough Road, London, London, SE1 0AA, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Conventional rigid grippers remain the most-used robotic grippers in industrial assembly tasks. However, they are limited in their ability to handle a diverse range of objects. This study draws inspiration from nature to address these limitations, employing multidisciplinary methods, such as computer-aided design, parametric modeling, finite element analysis, 3D printing, and mechanical testing.

View Article and Find Full Text PDF