Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Although the anisotropy and strategies for the modulation of the anisotropy in ReS2 have been widely reported, a comprehensive study on the inherent electronic anisotropy of ReS2 is still absent to date; therefore, the mechanism of anisotropy evolution is ambiguous as well. In this study, we have conducted a systematic investigation on the evolution of electronic anisotropy in bilayer ReS2, under the modulation of charge doping levels and temperature. It is found that the adjustability of electronic anisotropy is largely attributed to the angle-dependent scattering from defects or vacancies at a low doping level. At a high doping level, in contrast, the inherent electronic anisotropy can be recovered by filling the traps to attenuate the influence of scattering. This work renders insights into the exploration of electronic anisotropy in 2D materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr00518e | DOI Listing |