98%
921
2 minutes
20
The aim of vaccines is to imitate the immune responses induced by pathogen infection without causing disease. Therefore, strategies of designing vaccine delivery systems by mimicking key features of pathogens are often used. For this purpose, the present study prepares pathogen-mimicking β-glucan-conjugated hollow silica particles by using polystyrene or bacteria particles as templates. The particles perfectly duplicate the structure and morphology of pathogens and possess excellent properties of hollow silica particles, including large opening pore channels, large interior cavities, high loading of OVA (ovalbumin) and controlled release capability, biocompatibility, tunability of surface functionality and immunopotentiating activity. In addition, the particles are antigen presenting cells (APCs) targeted by specific interaction with β-glucan specific receptors on the surface of APCs, which can enhance the uptake and sustained proteolytic processing of antigens and induce APC maturation. Eventually, potent Th1 and Th2-type immune responses are aroused. The size and shape of the particles have a significant impact on the antigen uptake and immunoadjuvant activity. The degree of antigen uptake enhancement is ranked in the following order: PS HSP@glucan (nanoscale spherical) > E. coli HSP@glucan (micron-sized rod-like) > S. aureus HSP@glucan (micron-sized spherical). The PS HSP@glucan is more apt to induce a Th1-type immune response, while the E. coli HSP@glucan is more apt to induce a Th2-type immune response. The particles may thus provide a promising strategy for development of novel vaccine delivery systems for inducing robust humoral and cellular immune responses against infectious diseases and cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8tb02129e | DOI Listing |
J Control Release
September 2025
School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. Electronic address:
Fusobacterium nucleatum (Fn.) can colonize breast cancer tissue to promote tumor progression by inducing immunosuppression. Targeted therapeutic strategies against intratumoral bacteria remain unexplored and have potential in tumor immunotherapy.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal. Electronic a
The increasing prevalence of respiratory disorders highlights the urgent need for effective mucosal vaccines that elicit targeted immune responses at pathogen entry sites. However, the advancement of mucosal vaccines is limited by challenges in antigen delivery and overcoming mucosal immune tolerance. In this study, we developed a gene delivery platform using chitosan functionalized with lactobionic acid (LA) to enhance targeting of antigen-presenting cells and to form stable DNA polyplexes with high transfection efficiency.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
The development of multifunctional nanoplatforms capable of drug delivery and real-time cellular imaging remains a key challenge in cancer theranostics. Herein, we report the development of a casein-protected maleic acid-derived nitrogen-doped carbon dot-based luminescent nanoplatform (MNCD@Cas NPs) for efficient delivery of the anticancer drug doxorubicin hydrochloride (DOX) to triple-negative breast cancer cells. Synthesized via a facile two-step method, the MNCD@Cas NPs exhibit bright blue fluorescence (λ = 390 nm), high water dispersibility, excellent colloidal stability, and substantial DOX loading capacity (∼84%) driven by electrostatic interactions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. Electronic address:
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) sustains viral latency and drives oncogenesis in EBV-driven malignancies such as nasopharyngeal carcinoma and lymphomas. The dimerization of EBNA1 acts as an indispensable molecular switch governing EBV latency and oncogenesis. Disruption of EBNA1 dimerization is a promising strategy, but existing small-molecule inhibitors lack sufficient specificity.
View Article and Find Full Text PDFNuklearmedizin
September 2025
Nuclear Medicine, Ulm University Hospital, Ulm, Germany.
Silicon-based ligands are of interest in increasingly used Prostate-specific membrane antigen (PSMA) tracers for prostate cancer (PCa) staging due to their simple and scalable production. Here, we present first data on dosimetry and biodistribution of the novel PSMA-specific tracer [¹⁸F]siPSMA-14.Seven PCa patients referred for PSMA-PET/CT imaging were imaged at 60 and 120 min p.
View Article and Find Full Text PDF