Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Environment-biased technological progress plays a critical role in carbon reduction, while the association among environment-biased technological progress, energy consumption, and carbon emissions has not been paid enough attention. Working with a unique spatial panel dataset of APEC economies spanning the 2000-2017 period, we employed the nonspatial panel model and the spatial panel model to investigate the role of fossil energy (FE) and clean energy (CE) consumption in carbon dioxide (CO) abatement through environment-biased technological progress (EBTP). We decomposed EBTP into both emission-reducing biased technological progress (ErBTP) and energy-saving biased technological progress (EsBTP). The results show that the direct effect of EBTP on CO emissions was significantly negative and that the direct effect of ErBTP was significantly larger than that of EsBTP. EBTP reduced CO emissions through CE consumption, whereas it increased CO emissions through FE consumption, that is, EBTP had a "backfire effect" on FE consumption. More into detail, ErBTP had a larger effect on CO emissions in developing economies, while EsBTP played a more important role in developed economies. Furthermore, the results of the robustness test were consistent with our findings. Finally, several policy options were suggested to reduce CO emissions in APEC economies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-08437-5DOI Listing

Publication Analysis

Top Keywords

technological progress
24
environment-biased technological
16
energy consumption
12
reduce emissions
8
emissions apec
8
clean energy
8
consumption carbon
8
spatial panel
8
apec economies
8
panel model
8

Similar Publications

Introduction: The continuous progression of autonomous driving technology is propelling the automotive industry into an unprecedented era, with the intelligence and driving safety capabilities of autonomous vehicles serving as crucial benchmarks for assessing industry development. However, crashes involving autonomous vehicles have raised concerns among both government authorities and the general public regarding this technology. Consequently, conducting a comprehensive analysis of crash causes and key causal factors holds immense significance for technological progress, personnel safety, and shaping the future direction of the automotive industry.

View Article and Find Full Text PDF

From Mazes to Automation: Modernizing Working Memory Research in Animal Models.

Behav Brain Res

September 2025

Department of Cognitive Sciences, Faculty of Psychology and Education, University of Tehran, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran, Tehran, Iran.

Working memory (WM) is a core cognitive mechanism necessary for adaptive behavior. In the last few decades, scientists have studied WM using rodent models through traditional and time-consuming approaches, such as the Radial Arm Maze and the T-Maze. While these traditional tools have presented fundamental understanding, their dependence on manual operations restrains experimental precision and scalability.

View Article and Find Full Text PDF

Recent Advances in Gene Therapy for Hemophilia.

Clin Appl Thromb Hemost

September 2025

Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.

Hemophilia, an X-linked monogenic disorder, arises from mutations in the or genes, which encode clotting factor VIII (FVIII) or clotting factor IX (FIX), respectively. As a prominent hereditary coagulation disorder, hemophilia is clinically manifested by spontaneous hemorrhagic episodes. Severe cases may progress to complications such as stroke and arthropathy, significantly compromising patients' quality of life.

View Article and Find Full Text PDF

Recent advances in two-dimensional (2D) magnetic materials have promoted significant progress in low-dimensional magnetism and its technological applications. Among them, atomically thin chromium trihalides (CrX with X = Cl, Br, and I) are among the most studied 2D magnets due to their unique magnetic properties. In this work, we employ density functional theory calculations to investigate the mechanical and electronic properties of CrX monolayers in the presence of in-plane uniaxial strain.

View Article and Find Full Text PDF

Medical devices for tricuspid regurgitation have emerged as viable treatment options for patients who do not respond to drug therapy or who are unsuitable for open-heart surgery due to high surgical risk. Recently, numerous new medical devices have been proposed and approved for use. Therefore, comprehensive reviews of the literature on the current medical devices for tricuspid regurgitation are necessary.

View Article and Find Full Text PDF