98%
921
2 minutes
20
Optimal plant growth in many species is achieved when the two major forms of N are supplied at a particular ratio. In this pot experiment, the effects of five different ammonium:nitrate ratios (ANRs) (0:100, 12.5:87.5, 25:75, 37.5:62.5, and 50:50) on photosynthesis efficiency in chilli pepper (Capsicum annuum L.) plants were evaluated. The results showed that an ANR of 25:75 increased the contents of chl a, leaf area and dry matter, whereas chl b content was not affected by the ANRs. Regarding chlorophyll fluorescence, an ANR of 25:75 also enhanced the actual photochemical efficiency, photochemical quenching and maximum photosynthetic rate. However, the 0:100 and 50:50 ANRs resulted in higher values for nonphotochemical quenching. An inhibition of maximal photochemical efficiency was found when 50% NH was supplied at the later stage of plant growth. The addition of 25% or 37.5% NH was beneficial for gas exchange parameters and the 25% NH optimised the thylakoid of chloroplasts. Compared with nitrate alone, 12.5-50% NH upregulated glutamate dehydrogenase (GDH), the large subunit and the small subunit of Rubisco. It can be concluded that the 25:75 ANR accelerated N assimilation through active GDH, which provides a material basis for chloroplast and Rubisco formation, resulting in the increased photosynthetic rate and enhanced growth in chilli pepper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP19149_CO | DOI Listing |
Plant Dis
September 2025
USDA-ARS US Vegetable Laboratory, U.S. Vegetable Laboratory, 2700 Savanah Hwy, Charleston, South Carolina, United States, 29414;
Green fruit anthracnose caused by the fungus Colletotrichum scovillei is an emerging disease on various types of peppers (Capsicum spp.) in the eastern United States. Sixteen cultivars, representing 11 horticultural fruit types from four species of Capsicum, C.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6 - Dejvice, Prague, Czech Republic.
Chili peppers have been under the spotlight of bioactivity research as they feature a diverse and rich phytochemical profile with multiple health promoting effects. These beneficial properties are related to the chemical composition of chili peppers and is of utmost importance to identify varieties with the strongest bioprospecting potential. In this study, 19 chili pepper varieties were investigated originating from Capsicum annuum L.
View Article and Find Full Text PDFFood Res Int
November 2025
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China. Electronic address:
Intense pulsed light (IPL) is an emerging surface antimicrobial technology characterized by prominent efficiency but the performance in the decontamination of granular foods is yet to be improved. Using S. Enteritidis as a model bacterium, this article attempted to resolve the confusion on bactericidal mechanism of IPL treatment on spice products.
View Article and Find Full Text PDFMicrobiol Resour Announc
September 2025
Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), National Plant Protection Organization (NPPO), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands.
We report two complete genome sequences of a putative novel orthotospovirus species in pepper fruits ( sp.) from South Africa, provisionally named (Capsicum orthotospovirus 1; CaV1). Its nucleocapsid protein shows less than 88% amino acid identity with other orthotospoviruses.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
Department of Soil and Water Conservation and Organic Wastes Management, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, Spain.
Background: Sweet pepper (Capsicum annuum) is of considerable socio-economic importance and is among the most widely cultivated vegetables worldwide, occupying more than 20 000 km. Light-emitting diodes (LEDs), applied in continuous or pulsed modes, can increase yield and improve the phytochemical composition in indoor production systems. However, effective methodologies to define the optimal LED spectrum for maximizing growth across the full cultivation cycle - from seedling to fruit production - under controlled photoperiod conditions (14 h light/10 h dark) with pulsed lighting are lacking.
View Article and Find Full Text PDF