Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The preoperative distinction between uterine leiomyoma (LM) and leiomyosarcoma (LMS) is difficult, which may result in dissemination of an unexpected malignancy during surgery for a presumed benign lesion. An assay based on circulating tumor DNA (ctDNA) could help in the preoperative distinction between LM and LMS. This study addresses the feasibility of applying the two most frequently used approaches for detection of ctDNA: profiling of copy number alterations (CNAs) and point mutations in the plasma of patients with LM.

Patients And Methods: By shallow whole-genome sequencing, we prospectively examined whether LM-derived ctDNA could be detected in plasma specimens of 12 patients. Plasma levels of lactate dehydrogenase, a marker suggested for the distinction between LM and LMS by prior studies, were also determined. We also profiled 36 LM tumor specimens by exome sequencing to develop a panel for targeted detection of point mutations in ctDNA of patients with LM.

Results: We identified tumor-derived CNAs in the plasma DNA of 50% (six of 12) of patients with LM. The lactate dehydrogenase levels did not allow for an accurate distinction between patients with LM and patients with LMS. We identified only two recurrently mutated genes in LM tumors ( and ).

Conclusion: Our results show that LMs do shed DNA into the circulation, which provides an opportunity for the development of ctDNA-based testing to distinguish LM from LMS. Although we could not design an LM-specific panel for ctDNA profiling, we propose that the detection of CNAs or point mutations in selected tumor suppressor genes in ctDNA may favor a diagnosis of LMS, since these genes are not affected in LM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105159PMC
http://dx.doi.org/10.1200/po.18.00409DOI Listing

Publication Analysis

Top Keywords

point mutations
12
circulating tumor
8
tumor dna
8
preoperative distinction
8
distinction lms
8
ctdna profiling
8
cnas point
8
lactate dehydrogenase
8
patients
7
lms
7

Similar Publications

Background: Cardiac laminopathies, associated with mutations in the LMNA gene, are a rare inherited disorder characterized by a broad range of clinical manifestations. There are currently no data on the association between supraventricular re-entrant tachycardias and LMNA-related cardiomyopathy.

Case Summary: A 26-year-old male presented with either wide-QRS tachycardia with a left bundle branch block (LBBB) pattern or narrow QRS tachycardia, as well as a history of palpitations since age 15.

View Article and Find Full Text PDF

Quinolone resistance in from Thai ducks: Mutation analysis of , and genes.

Vet World

July 2025

Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand.

Background And Aim: is a Gram-negative bacterium causing systemic infections in ducks, often treated with quinolones. However, increasing resistance to quinolones poses a threat to effective treatment, and the molecular mechanisms underlying this resistance remain inadequately understood in Thailand. This study aimed to determine the minimum inhibitory concentrations (MICs) of nalidixic acid, ciprofloxacin, and enrofloxacin; identify mutations in the quinolone resistance-determining regions of and ; and detect () genes in isolates from Thai ducks.

View Article and Find Full Text PDF

EZH2 variants derived from cryptic splice sites govern distinct epigenetic patterns during embryonic development.

Nucleic Acids Res

September 2025

Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China.

EZH2 catalyzes H3K27me3 and is essential for embryonic development. Although multiple EZH2 variants have been identified, the functional implications and physiological significance of its heterogeneity remain unclear. Here, we revealed that conserved cryptic splice sites generated two EZH2 variants with (EZH2A) or without (EZH2B) a 27-nt region, coding for a 9-aa segment.

View Article and Find Full Text PDF

Purpose: WU-KONG1B (ClinicalTrials.gov identifier: NCT03974022) is a multinational phase II, dose-randomized study to assess the antitumor efficacy of sunvozertinib in pretreated patients with advanced non-small cell lung cancer (NSCLC) with epidermal growth factor receptor () exon 20 insertion mutations (exon20ins).

Methods: Eligible patients with advanced-stage exon20ins NSCLC were randomly assigned by 1:1 ratio to receive sunvozertinib 200 mg or 300 mg once daily (200 and 300 mg-rand cohorts).

View Article and Find Full Text PDF

Identification and antiviral mechanism of a novel chicken-derived interferon-related antiviral protein targeting PRDX1.

PLoS Pathog

September 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China.

In this study, we identified a new chicken-specific protein, named chicken interferon-related antiviral protein (chIRAP) after sequence analysis and comparison, which inhibited the proliferation of various viruses including influenza A virus (IAV) and Newcastle Disease Virus (NDV) in vitro, and chicken embryos with high expression of chIRAP reduced IAV infection. Mass spectrometry analysis of chIRAP interacting proteins and screening of interacting proteins affecting the function of chIRAP revealed that the deletion of endogenous chicken peroxiredoxin 1 (chPRDX1) significantly reduced the antiviral effect of chIRAP. In order to clarify the functional site of chPRDX1 affecting the antiviral effect of chIRAP, we constructed the point mutants of chPRDX1 based on the results of molecular docking (D79A, T90A, K93A, Q94A, R110A, R123A), and screened the sites affecting the antiviral effects of chIRAP by knockdown of endogenous chPRDX1 combined with the overexpression mutant strategy, the results showed that the mutations in the sites affected the antiviral effects of chIRAP to different degrees, with D79A being the most significant, and the D79A mutation of chPRDX1 reduces the ability of chPRDX1 to regulate reactive oxygen species (ROS).

View Article and Find Full Text PDF