CRiSP: accurate structure prediction of disulfide-rich peptides with cystine-specific sequence alignment and machine learning.

Bioinformatics

Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.

Published: June 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Motivation: High-throughput sequencing discovers many naturally occurring disulfide-rich peptides or cystine-rich peptides (CRPs) with diversified bioactivities. However, their structure information, which is very important to peptide drug discovery, is still very limited.

Results: We have developed a CRP-specific structure prediction method called Cystine-Rich peptide Structure Prediction (CRiSP), based on a customized template database with cystine-specific sequence alignment and three machine-learning predictors. The modeling accuracy is significantly better than several popular general-purpose structure modeling methods, and our CRiSP can provide useful model quality estimations.

Availability And Implementation: The CRiSP server is freely available on the website at http://wulab.com.cn/CRISP.

Contact: wuyd@pkusz.edu.cn or jiangfan@pku.edu.cn.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btaa193DOI Listing

Publication Analysis

Top Keywords

structure prediction
12
disulfide-rich peptides
8
cystine-specific sequence
8
sequence alignment
8
structure
5
crisp
4
crisp accurate
4
accurate structure
4
prediction disulfide-rich
4
peptides cystine-specific
4

Similar Publications

Engineering the crystal structure and band gap of SrTeO: inducing bonding changes and metallization through compression.

Dalton Trans

September 2025

Departamento de Fisica Aplicada-ICMUV, MALTA Consolider Team, Universitat de Valencia, Av. Dr. Moliner 50, 46100 Burjassot (Valencia), Spain.

The impact of external pressure on the characteristics of SrTeO has been thoroughly examined using density-functional theory calculations up to 100 GPa. It has been predicted that SrTeO undergoes three phase transitions in the pressure range covered by this study. A first transition occurs at 2.

View Article and Find Full Text PDF

First report on machine learning based multiclass classification of Caco-2 permeability using different balancing strategies.

SAR QSAR Environ Res

September 2025

Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.

Evaluating the permeability of different molecular structures across the Caco-2 cell line is crucial for drug discovery and development. The present study primarily focuses on developing machine learning-based multiclass classification models for predicting the permeability of molecules across the Caco-2 cell line. However, the class imbalance in permeability datasets poses a significant challenge for developing predictive models in the case of multiclass analysis.

View Article and Find Full Text PDF

Leishmaniasis, a disease caused by Leishmania parasites, poses a significant health threat globally, particularly in Latin America and Brazil. Leishmania amazonensis is an important species because it is associated with both cutaneous leishmaniasis and an atypical visceral form. Current treatments are hindered by toxicity, resistance, and high cost, driving the need for new therapeutic targets and drugs.

View Article and Find Full Text PDF

Hindered rotation and bending anharmonicity in aluminum alkyls: implications for methylaluminoxane thermodynamics.

Phys Chem Chem Phys

September 2025

Department of Chemistry and Sustainable Technology, University of Eastern Finland, Joensuu Campus, Yliopistokatu 7, FI-80100, Joensuu, Finland.

Accurate thermodynamic calculations for aluminum alkyls require proper treatment of low-frequency vibrations poorly described by the harmonic approximation (HA). Here, we present a systematic investigation of hindered rotation and out-of-plane bending in aluminum trichloride (ATC) and its methyl derivatives, employing advanced computational methods to perform anharmonic entropy corrections, such as torsional eigenvalue summation (TES), the extended two-dimensional torsion method (E2DT), the multi-structural approximation with torsional anharmonicity (MS-T), and Fourier grid Hamiltonian (FGH). Our results reveal distinct structure-dependent behaviors: monomers exhibit near-free methyl rotations where the HA overestimates entropy by 20-30 J K mol, while dimers show more hindered rotations adequately described by the HA around room temperature.

View Article and Find Full Text PDF

Molecular switches and real-time ion sensing in pyridinium circuits a single-molecule STM-break junction.

Nanoscale Horiz

September 2025

Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, 9170022, Chile.

The functional electronic and spectro-electrochemical properties of two structural pyridinium isomers, Py_Down-BF and Py_Up-BF, were studied at the single-molecule level using the STM-BJ technique. These isomers differ in the position of the redox-active pyridinium core. The aim was to identify the role of core's position in promoting reversible switching between electromers (redox isomers) in solution and at the gold-pyridinium-gold junction circuit.

View Article and Find Full Text PDF