A reflection on lithium-ion battery cathode chemistry.

Nat Commun

Materials Science and Engineering Program & Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA.

Published: March 2020


Article Synopsis

  • Lithium-ion batteries have played a crucial role in the growth of portable electronics for almost 30 years, and are now expanding into electric vehicles and utility applications.
  • Their success is largely due to their higher energy density, which comes from the development of advanced electrode materials through solid-state chemistry and physics research in the 1970s and 1980s.
  • The 2019 Nobel Prize in Chemistry highlighted the importance of lithium-ion batteries, prompting a reflection on the advancements in cathode chemistry that have made modern battery technology possible, alongside a look at future developments.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lithium-ion batteries have aided the portable electronics revolution for nearly three decades. They are now enabling vehicle electrification and beginning to enter the utility industry. The emergence and dominance of lithium-ion batteries are due to their higher energy density compared to other rechargeable battery systems, enabled by the design and development of high-energy density electrode materials. Basic science research, involving solid-state chemistry and physics, has been at the center of this endeavor, particularly during the 1970s and 1980s. With the award of the 2019 Nobel Prize in Chemistry to the development of lithium-ion batteries, it is enlightening to look back at the evolution of the cathode chemistry that made the modern lithium-ion technology feasible. This review article provides a reflection on how fundamental studies have facilitated the discovery, optimization, and rational design of three major categories of oxide cathodes for lithium-ion batteries, and a personal perspective on the future of this important area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096394PMC
http://dx.doi.org/10.1038/s41467-020-15355-0DOI Listing

Publication Analysis

Top Keywords

lithium-ion batteries
16
cathode chemistry
8
lithium-ion
5
reflection lithium-ion
4
lithium-ion battery
4
battery cathode
4
chemistry
4
chemistry lithium-ion
4
batteries
4
batteries aided
4

Similar Publications

Impact of Different Lithiation Mechanisms Across Transition Metal Oxide Anodes on Performances for High-Energy Lithium-Ion Batteries.

Chem Rec

September 2025

Analytical and Applied Chemistry Division, CSIR-National Metallurgical Laboratory, Jamshedpur, 831007, India.

Transition metal oxides (TMOs) are a promising material for use as anodes in lithium-ion batteries (LIBs). TMO anode can be classified on the basis of their lithiation/delithiation mechanism, such as intercalation mechanism-based TMO anode, conversion mechanism-based TMOs, and alloying/dealloying mechanism-based TMO anode. Each class of TMOs has its own advantages and limitations.

View Article and Find Full Text PDF

Valorizing spent lithium iron phosphate battery in biomass pyrolysis for production of valuable chemicals and mitigating pollutant emissions.

Bioresour Technol

September 2025

Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

The rapid increase of electronic waste, particularly battery waste, presents significant environmental challenges such as pollutant emissions and resource depletion, emphasizing the need for effective valorization and reuse strategies. This study introduces a novel approach for repurposing end-of-life lithium iron phosphate (LFP) batteries as catalysts in the pyrolysis of walnut shells (WS). Characterization analyses revealed that LFP provides both Lewis and Brønsted acid sites, which alter the thermal decomposition pathway of WS.

View Article and Find Full Text PDF

Thermally stable and highly wetted asymmetric porous nanocellulose/poly(m-phenylene isophthalamide) composite separators for high-performance lithium-ion batteries.

Int J Biol Macromol

September 2025

Jiangsu Provincial Key Lab for The Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.

Aramid films are potential separator candidates for high-safety lithium-ion batteries (LIBs) due to their inherent flame retardancy and outstanding thermal stability. However, both weak liquid electrolyte wettability and poor mechanical properties of aramid separators for lithium-ion batteries result in low ionic conductivity and unsatisfactory electrochemical performance for LIBs. Herein, a novel asymmetric porous composite separator composed of a relatively dense nanocellulose (CNC) layer and a porous poly(m-phenylene isophthalamide) (PMIA) supporting layer has been fabricated by using a water-induced phase conversion process.

View Article and Find Full Text PDF

Unveiling an Innovative Pathway for Enhancing Lithium-ion Conductivity of LiPWO Electrolyte via Pressure Modulation Strategy.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.

Solid-state lithium-ion batteries have raised considerable attention due to their great potential for the development of new energy storage devices with high energy density and safety. However, enhancing ion conductivity in solid-state electrolytes stands as a pivotal challenge for the large-scale commercialization of next-generation lithium-ion batteries. Here, a high-pressure strategy is reported to achieve the significant enhancement of lithium-ion conductivity by 2 orders of magnitude and the disappearance of grain boundary resistance in polyoxometalate LiPWO electrolyte via an irreversible phase transition from Keggin to bronze structure.

View Article and Find Full Text PDF

Nowadays, the continuous advancement of sodium-ion battery technology has made it an important choice in the new energy field and promoted the development of lithium-ion batteries. The cycling stability of cathode materials for sodium-ion batteries at high voltage (>4.0 V) is still a key challenge.

View Article and Find Full Text PDF