Biological effects of radiofrequency fields: Testing a paradigm shift in dosimetry.

Environ Res

Service Risk and Health Impact Assessment, Sciensano, Brussels, Belgium.

Published: May 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biological effects have been reproducibly reported in rodents exposed to radiofrequency fields (RF) without significant change of the body temperature. These observations relaunch the controversial question of non-thermal effects of RF. If true, such effects would imply to consider RF energy absorption/interaction in tissues, not as volume-averaged, but locally down to the microscale, which is of potential consequence in particular at frequencies beyond 3 GHz. We propose study protocols to explore that question.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2020.109387DOI Listing

Publication Analysis

Top Keywords

biological effects
8
radiofrequency fields
8
effects radiofrequency
4
fields testing
4
testing paradigm
4
paradigm shift
4
shift dosimetry
4
dosimetry biological
4
effects reproducibly
4
reproducibly reported
4

Similar Publications

Canids originally evolved in North America, presenting a compelling story of shifting climates, paleogeographies, and both successes and failures in adapting to these changes. Species evolve-new ones arrive on the scene and established ones become extinct. The dire wolf (Aenocyon dirus) is one of the most legendary of the extinct canids and is the most basal member of the crown group of large dogs (Canina) that includes the extant gray wolf (Canis lupus).

View Article and Find Full Text PDF

Environmental Stresses Constrain Soil Microbial Community Functions by Regulating Deterministic Assembly and Niche Width.

Mol Ecol

September 2025

State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.

Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).

View Article and Find Full Text PDF

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

Multiyear Drought Strengthens Positive and Negative Functional Diversity Effects on Tree Growth Response.

Glob Chang Biol

September 2025

Chair of Silviculture, Faculty of Environment and Natural Resources, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.

Mixed-species forests are proposed to enhance tree resistance and resilience to drought. However, growing evidence shows that tree species richness does not consistently improve tree growth responses to drought. The underlying mechanisms remain uncertain, especially under unprecedented multiyear droughts.

View Article and Find Full Text PDF

Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.

View Article and Find Full Text PDF